BRANCH: Production Engineering

SEMESTER - 3

Course Code	Course Name	L-T-P	Credits	Exam Slot
MA201	Linear Algebra & Complex Analysis	3-1-0	4	A
ME201	Mechanics of Solids	3-1-0	4	В
ME200	Fluid Mechanics & Machinery	3-1-0	4	С
MP201	Machine Tool Technology	4-0-0	4	D
ME210	Metallurgy & Materials Engineering	3-0-0	3	E
HS200/ HS210	Business Economics/Life Skills	3-0-0/ 2-0-2	3	F
ME233	Mechanical Engineering Lab	0-0-3	1	S
MP231	Production Engineering Drawing	0-0-3	1	т

Total Credits = 24

Hours: 28/29 Cumulative Credits= 71

Course No.	Course Name	L-T-P- Credits	Year of Introduction
HS210	LIFE SKILLS	2-0-2	2016

Course Objectives

- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To understand team dynamics & effectiveness.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

Syllabus

Communication Skill: Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.

Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats Mind Mapping & Analytical Thinking.

Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.

Ethics, Moral & Professional Values: Human Values, Civic Rights, Engineering Ethics, Engineering as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.

Leadership Skills: Leadership, Levels of Leadership, Making of a leader, Types of leadership, Transactions Vs Transformational Leadership, VUCA Leaders, DART Leadership, Leadership Grid & leadership Formulation.

Expected outcome

- Communicate effectively.
- Make effective presentations.
- Write different types of reports.
- Face interview & group discussion.
- Critically think on a particular problem.
- Solve problems.
- Work in Group & Teams
- Handle Engineering Ethics and Human Values.
- Become an effective leader.

References:

- Barun K. Mitra; (2011), "*Personality Development & Soft Skills*", First Edition; Oxford Publishers.
- Kalyana; (2015) "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd.
- Larry James (2016); "The First Book of Life Skills"; First Edition; Embassy Books.
- Shalini Verma (2014); "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company
- John C. Maxwell (2014); "The 5 Levels of Leadership", Centre Street, A division of Hachette Book Group Inc.

	Course Plan			
Module	Contents	Ho L-7 T	urs Γ-Ρ Ρ	Sem. Exam Marks
	Need for Effective Communication, Levels of communication; Flow of communication; Use of language in communication; Communication networks; Significance of technical communication, Types of barriers; Miscommunication; Noise; Overcoming measures,	2		
	Listening as an active skill; Types of Listeners; Listening for general content; Listening to fill up information; Intensive Listening; Listening for specific information; Developing effective listening skills; Barriers to effective listening skills.		2	
I	Technical Writing: Differences between technical and literary style, Elements of style; Common Errors, Letter Writing: Formal, informal and demi-official letters; business letters, Job Application : Cover letter, Differences between bio-data, CV and Resume, Report Writing: Basics of Report Writing; Structure of a report; Types of reports.		4	
	Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language	3		
	Interview Skills: Types of Interviews; Ensuring success in job interviews; Appropriate use of non-verbal communication, Group Discussion: Differences between group discussion and debate; Ensuring success in group discussions, Presentation Skills: Oral presentation and public speaking skills; business presentations, Technology-based Communication: Netiquettes: effective e-mail messages; power-point presentation; enhancing editing skills using computer software.		4	
П	Need for Creativity in the 21 st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity	2		

	Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence.		2	
	Steps in problem solving, Problem Solving Techniques, Problem Solving through Six Thinking Hats, Mind Mapping, Forced Connections.	2		
	Problem Solving strategies, Analytical Thinking and quantitative reasoning expressed in written form, Numeric, symbolic, and graphic reasoning, Solving application problems.		2	
	Introduction to Groups and Teams, Team Composition, Managing Team Performance, Importance of Group, Stages of Group, Group Cycle, Group thinking, getting acquainted, Clarifying expectations.	3		
	Group Problem Solving, Achieving Group Consensus.		2	
III	Group Dynamics techniques, Group vs Team, Team Dynamics, Teams for enhancing productivity, Building & Managing Successful Virtual Teams. Managing Team Performance & Managing Conflict in Teams.	3		
	Working Together in Teams, Team Decision-Making, Team Culture & Power, Team Leader Development.		2	
	Morals, Values and Ethics, Integrity, Work Ethic, Service Learning, Civic Virtue, Respect for Others, Living Peacefully.	3		
	Caring, Sharing, Honesty, Courage, Valuing Time, Cooperation, Commitment, Empathy, Self-Confidence, Character,		2	
IV	Spirituality, Senses of 'Engineering Ethics', variety of moral issued, Types of inquiry, moral dilemmas, moral autonomy, Kohlberg's theory, Gilligan's theory, Consensus and controversy, Models of Professional Roles, Theories about right action, Self-interest, customs and religion, application of ethical theories.	3		
	Engineering as experimentation, engineers as responsible experimenters, Codes of ethics, Balanced outlook on.	3		
	The challenger case study, Multinational corporations, Environmental ethics, computer ethics,		2	
	Weapons development, engineers as managers, consulting			

	engineers, engineers as expert witnesses and advisors, moral leadership, sample code of Ethics like ASME, ASCE, IEEE, Institution of Engineers(India), Indian Institute of Materials	3		
	Management, Institution of electronics and telecommunication engineers(IETE), India, etc.			
	Introduction, a framework for considering leadership, entrepreneurial and moral leadership, vision, people selection and development, cultural dimensions of leadership, style, followers, crises.	4		
V	Growing as a leader, turnaround leadership, gaining control, trust, managing diverse stakeholders, crisis management Implications of national culture and multicultural leadership	2	2	
	Types of Leadership, Leadership Traits. Leadership Styles, VUCA Leadership, DART Leadership, Transactional vs Transformational Leaders, Leadership Grid, Effective Leaders, making of a Leader, Formulate Leadership		2	
	END SEMESTER EXAM			

EVALUATION SCHEME

Internal Evaluation

(Conducted by the College)

Total Marks: 100

Part – A

(To be started after completion of Module 1 and to be completed by 30th working day of the semester)

 Group Discussion – Create groups of about 10 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation is as follows;

(i)	Communication Skills	—	10 marks
(ii)	Subject Clarity	_	10 marks
(iii)	Group Dynamics	-	10 marks
(iv)	Behaviors & Mannerism	S -	10 marks

(Marks: 40)

Part – B

(To be started from 31^{st} working day and to be completed before 60^{th} working day of the semester)

2. Presentation Skills – Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation is as follows;

(i)	Communication Skills*	-	10 marks
(ii)	Platform Skills**	-	10 marks
(iii)	Subject Clarity/Knowledge	-	10 marks

(Marks: 30)

* Language fluency, auditability, voice modulation, rate of speech, listening, summarizes key learnings etc.

** Postures/Gestures, Smiles/Expressions, Movements, usage of floor area etc.

Part – C

(To be conducted before the termination of semester)

3. Sample Letter writing or report writing following the guidelines and procedures. Parameters to be used for evaluation is as follows;

(i)	Usage of English & Grammar	-	10 marks
(ii)	Following the format	-	10 marks
(iii)	Content clarity	-	10 marks

(Marks: 30)

External Evaluation

(Conducted by the University)

Total Marks: 50

Time: 2 hrs.

Part – A

Short Answer questions

There will be one question from each area (five questions in total) will be asked for the examination. Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows;

- (i) Content Clarity/Subject Knowledge
- (ii) Presentation style
- (iii) Organization of content

(*Marks*: $5 \times 6 = 30$)

Part – B

Case Study

The students will be given a case study with questions at the end the students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows;

- (i) Analyze the case situation
- (ii) Key players/characters of the case
- (iii) Identification of the problem (both major & minor if exists)
- (iv) Bring out alternatives
- (v) Analyze each alternative against the problem
- (vi) Choose the best alternative
- (vii) Implement as solution
- (viii) Conclusion
- (ix) Answer the question at the end of the case

(*Marks:* 1 x 20 =20)

Course N	No. Course Name	L-T-P - Credits	i Int	Year of roduction
MA202	LINEAR ALGEBRA AND COMPLEX ANALYSIS	3-1-0-4		2016
Prerequis	ite : Nil			
Course O	biectives			
COURSE	OBJECTIVES			
• To	equip the students with methods of solving a general s	ystem of linear equ	ations.	
• To	familiarize them with the concept of Eigen values and	diagonalization of	a matrix w	which have
ma	ny applications in Engineering.		100	
• To	understand the basic theory of functions of a complex	variable and confo	rmal Trans	sformations.
~	I LOLINOLOG	11011	her	
Syllabus			C	
Analyticit	y of complex functions-Complex differentiation-C	conformal mappin	igs-Comp	lex
integration	-System of linear equations-Eigen value problem			
Exporter	louteomo			
At the end	of the course students will be able to			
(i) solve an	y given system of linear equations			
(ii) find the	Eigen values of a matrix and how to diagonalize a ma	trix		
(iii) identif	y analytic functions and Harmonic functions.			
(iv)evaluat	e real definite Integrals as application of Residue Theorem	rem		
(v) identify	conformal mappings(vi) find regions that are mapped	under certain Tran	sformation	IS
Text Boo	ok:			
Erwin Kre	e <mark>ys</mark> zig: Advanced Engineering Mathematics, 10 th ed. W	Viley		
Reference	ces:			
1.Dennis g	Zill&Patric D Shanahan-A first Course in Complex Ai	nalysis with Applic	cations-Jon	es&Bartlet
Publishers	wal Higher Engineering Mathematica, Khanna Publich	are New Delhi		
2.D. S. Ole 3 Lipschutz	V Linear Algebra 3e (Schaums Sories) McGraw Hill F	ducation India 200	5	
4.Complex	variables introduction and applications-second edition	-Mark.LOwitz-Ca	o nbridge Pi	ublication
···· I				
	Course Plan			
				Sem. Exam
Module	Contents		Hours	Marks
	Complex differentiation Text 1[13.3,13.4]			
	Limit, continuity and derivative of complex function	S	3	
	Analytia Eurotions 2014	1		
	Analytic Functions		2	
Т	Cauchy–Riemann Equation(Proof of sufficient condit	tion of		
-	analyticity & C R Equations in polar form not require	ed)-Laplace's	2	
	Equation			
	Harmonic functions, Harmonic Conjugate		2	1
				15%
	Contormal mapping: lext 1/1/.1-1/.4		1	
тт	Geometry of Analytic functions conformal Mapping,		1	
11	Manning $w = \sigma^2$ conformality of $w = \sigma^2$		2	
	wapping $w = z$ combinantly of $w = e$.		2	1504
				1,1 70

	The mapping $w = z + \frac{1}{z}$		
	Properties of $w = \frac{1}{z}$	1	
	د Circles and straight lines, extended complex plane, fixed points		
	Special linear fractional Transformations, Cross Ratio, Cross Ratio property-Mapping of disks and half planes	3	
	Conformal mapping by $w = \sin z \& w = \cos z$	3	
	(Assignment: Application of analytic functions in Engineering)		
	FIRST INTERNAL EXAMINATION		
	Complex Integration. Text 1[14.1-14.4] [15.4&16.1]		
	Definition Complex Line Integrals, First Evaluation Method, Second	2	
	Evaluation Method	2	
	path(without proof). Cauchy's Integral Theorem for Multiply	2	1504
	Connected Domains (without proof)		1 J 70
III	Cauchy's Integral Formula- Derivatives of Analytic	2	
	Functions(without proof)Application of derivative of Analytical	-	
	Functions Taylor and Maclaurin series (without proof). Power series as Taylor		
	series. Practical methods(without proof)	2	
	Laurent's series (without proof)	2	
	Residue Integration Text 1 [16.2-16.4]		15%
	Singularities, Zeros, Poles, Essential singularity, Zeros of analytic	2	
	Tunctions	V	
	Residue Integration Method, Formulas for Residues, Several	4	
	singularities inside the contour Residue Theorem.		
IV			
	Evaluation of Real Integrals (i) Integrals of rational functions of	3	
	$\sin\theta$ and $\cos\theta$ (ii)Integrals of the type $\int f(x)dx$ (Type I, Integrals		
	from 0 to ∞)		
	SECOND INTERNAL EXAMINATION		20%
	Linear system of Equations Text 1(7.3-7.5)		2070
	Linear systems of Equations, Coefficient Matrix, Augmented Matrix	1	
V	Gauss Elimination and back substitution. Elementary row operations		
	Row equivalent systems, Gauss elimination-Three possible cases.	~	
	Row Echelon form and Information from it.	5	

	Linear independence-rank of a matrix	2		
	Vector Space-Dimension-basis-vector space R ³			
	Solution of linear systems, Fundamental theorem of non- homogeneous linear systems(Without proof)-Homogeneous linear systems (Theory only	1		
	Matrix Eigen value Problem Text 1.(8.1,8.3 &8.4)		20%	
	Determination of Eigen values and Eigen vectors-Eigen space	3		
VI	Symmetric, Skew Symmetric and Orthogonal matrices –simple properties (without proof)	2		
	Basis of Eigen vectors- Similar matrices Diagonalization of a matrix- Quadratic forms- Principal axis theorem(without proof)	4		
	(Assignment-Some applications of Eigen values(8.2))			
END SEMESTER EXAM				

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

2014

Any two questions from each part have to be answered.

Cour Numb	Course NumberCourse NameL-T-P- CreditsYear of Introduct					
ME2	00 Fluid mechanics and Machinery	3-1-0-4	2	016		
Prerequi	site : Nil					
Course ()bjectives:					
• T • T • T • T Syllabus	o introduce students, the fundamental concepts is o understand the basic principles of fluid machi o apply acquired knowledge on real life problem o analyze existing fluid systems and design new	related to the mechanism and devices. ns. fluid systems.	hanics of	fluids.		
bynabus	I NIVER'	Y				
Fund hydraulic	amental Concepts, fluid statics and dynamics, fl turbines, positive displacement pumps, rotary r devices	uid kinematics, be notion of liquids,	oundary la centrifuga	ayer theory, al pump,		
Expected	Outcome					
Up on co	mpletion of course the students might be in a po	osition to:				
i. A	nalyze flow problems associated with statics, ki	nematics and dyn	amics of f	luids.		
ii. D	esign and analyze fluid devices such as water tu	rbines and pumps	5.			
iii. U	nderstand and rectify problems faced in practica	al cases of enginee	ering appl	ications.		
Text Boo	k:					
	1. Modi P. N. and S. M. Seth, <i>Hydraulics & J</i>	Fluid Mechanics,	S.B.H Pu	blishers,		
	New Delhi, 2002.					
	2. Kumar D. S., Fluid Mechanics and Fluid	Power Engineerin	<i>ıg</i> , S. K. I	Kataria &		
	Sons, New Delhi, 1998.					
Reference	es:		11/			
1. J. F. D	ouglas, "Fluid Mechanics", Pearson education.					
2. Cengel	Y. A. an <mark>d J. M. Cimbala, Flu</mark> id Mechanics, Tat	ta <mark>McGraw Hill, 2</mark>	2013			
3. Robert	W. Fox and Mc Donald, "Introduction to fluid	dyn <mark>amics", John </mark>	Wiley and	sons		
4. K. Sub	rahmanya, " <mark>Theory and app</mark> lications of fluid me	echanics", (TMH)				
5. Shame	s. I. H, "Mechanics of fluids".					
6. Jagadi	sh Lal, "Fluid m <mark>echanics an</mark> d Hydr <mark>aulic mach</mark> ine	es".				
7. R K B	ansal, "Hydraulic Machines"					
2014						
Course Plan						
Module	Contents	1	Hours	Sem. exam marks		
	Fundamental concepts: Properties of fluid -	density, specific				
	weight, viscosity, surface tension, capillarity,	vapour pressure,				
Ι	bulk modulus, compressibility, velocity, rate	ot shear strain,	6	15%		
	Newton's law of viscosity, Newtonian and	non-Newtonian	_			
	fluids, real and ideal fluids, incompressible a	and compressible				
	fluids.					

II	Fluid statics: Atmospheric pressure, gauge pressure and absolute pressure. Pascal's Law, measurement of pressure - piezo meter, manometers, pressure gauges, energies in flowing fluid, head - pressure, dynamic, static and total head, forces on planar and curved surfaces immersed in fluids, centre of pressure, buoyancy, equilibrium of floating bodies, metacentre and metacentric height.	10	15%		
	Fluid kinematics and dynamics: Classification of flow -1D,	AT			
III	2D and 3D flow, steady, unsteady, uniform, non-uniform, rotational, irrotational, laminar and turbulent flow, path line, streak line and stream line. Continuity equation, Euler's equation, Bernoulli's equation. Reynolds experiment, Reynold's number. Hagen- Poiseuille equation, head loss due to friction, friction, Darcy- Weisbach equation, Chezy's formula, compounding pipes, branching of pipes, siphon effect, water hammer transmission of power through pipes (simple problems)	AL 8	15%		
IV	Boundary layer theory: Basic concepts, laminar and turbulent boundary layer, displacement, momentum, energy thickness, drag and lift, separation of boundary layer. Flow rate measurements- venturi and orifice meters, notches and weirs (description only for notches, weirs and meters), practical applications, velocity measurements- Pitot tube and Pitot –static tube.	10	15%		
Second Internal Exam					
V	Hydraulic turbines : Impact of jets on vanes - flat, curved, stationary and moving vanes - radial flow over vanes. Impulse and Reaction Turbines – Pelton Wheel constructional features - speed ratio, jet ratio & work done , losses and efficiencies, inward and outward flow reaction turbines- Francis turbine constructional features, work done and efficiencies – axial flow turbine (Kaplan) constructional features, work done and efficiencies.	10	20%		
VI	 Positive displacement pumps: reciprocating pump, indicator diagram, air vessels and their purposes, slip, negative slip and work required and efficiency, effect of acceleration and friction on indicator diagram (no derivations), multi cylinder pumps. Rotary motion of liquids: – free, forced and spiral vortex flows, (no derivations), centrifugal pump, working principle, impeller, casings, manometric head, work, efficiency and losses, priming, specific speed, multistage pumps, selection of pumps, pump characteristics. 	10	20%		
End Semester Exam					

Question Paper Pattern

Max. marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P-Credits	Year of Introduction			
ME233	ME233 Mechanical Engineering Lab 0-0-3-1 20					
Prerequisite : Ni	1					
 Course Objective To develop To provid energy con To familia and condu 	e p engineering related skills of fluid me le necessary practical knowledge relat nversion systems. arize with various apparatus and mach act experiments.	chanics and prime ed to the theory of nines in fluid mech	movers f fluid mechanics and nanics and IC engines			
	List of Experime	nts				
1. Determina	ation of coefficient of discharge and cal	libration of rectang	ular notch			
2. Determina	ation of coefficient of discharge and cal	libration of triangul	ar notch.			
3. Determina	ation of coefficient of discharge and cal	libration of venturI	meter			
4. Determina	ation of coefficient of discharge and cal	libration of orifice r	neter.			
5. Determina	ation of hydraulics coefficient using ori	fice apparatus.				
6. Determina	ation of meta-centric height and radius	of gyration of floati	ing body.			
7. Pipe friction	on apparatus to find Darcy's frictional	coefficient and Che	ezy's constant.			
8. Perf <mark>orm</mark> an	nce test on positive displacement pump					
9. Performan	nce test on centrifugal pump					
10. Performan	nce test on impulse turbine.		100			
11. Performan	nce test on reaction turbine.					
12. Performan	nce test on hydraulic ram					
13. Performan	nce test on two stroke diesel engine.		A			
14. Performan	nce test on four stroke diesel engine.					
15. Performan	15. Performance test on four stroke petrol engines					
16. Performan	16. Performance test on two stroke petrol engines					
17. Calibration	n of pressure gauge					
Note: It is	s mandatory to conduct at least 12 ex	periments.				

Course No.	Course Name	L-T-P-Credits	Year of Introduction
ME201	MECHANICS OF SOLIDS	3-1-0-4	2016

Prerequisite: nil

Course Objectives:

- 1. To acquaint with the basic concepts of stress and deformation in solids.
- 2. To practice the methodologies to analyse stresses and strains in simple structural members, and to apply the results in simple design problems.

Syllabus

Analysis of deformable bodies : stress, strain, material behaviour, deformation in axially loaded bars, biaxial and triaxial deformation. Torsion of elastic circular members, design of shafts. Axial force, shear force and bending moment in beams. Stresses in beams: flexure and shear stress formulae, design of beams. Deflection of beams. Transformation equations for plane state of stress and strain, principal planes and stresses, Mohr's circle. Compound stresses: combined axial, flexural and shear loads – eccentric loading. Buckling: Euler's theory and Rankine's formula for columns.

Expected outcomes: At the end of the course students will be able to

- 1. Understand basic concepts of stress and strain in solids.
- 2. Determine the stresses in simple structural members such as shafts, beams, columns etc. and apply these results in simple design problems.
- 3. Determine principal planes and stresses, and apply the results to combined loading case.

Text Books:

- 1. Rattan, Strength of Materials, 2e McGraw Hill Education India, 2011
- 2. S.Jose, Sudhi Mary Kurian, Mechanics of Solids, Pentagon, 2015

References Books:

- 1.S. H. Crandal, N. C. Dhal, T. J. Lardner, An introduction to the Mechanics of Solids, McGraw Hill, 1999
- 2. R. C. Hibbeler, Mechanics of Materials, Pearson Education, 2008
- 3. I.H. Shames, J. H. Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India, 2006
- 4. James M.Gere, Stephen Timoshenko, Mechanics of Materials, CBS Publishers & Distributors, New Delhi,2012

2014

- 5. F. Beer, E. R. Johnston, J. T. DeWolf, Mechanics of Materials, Tata McGraw Hill, 2011
- 6. A. Pytel, F. L. Singer, Strength of Materials, Harper & Row Publishers, New York, 1998
- 7. E. P. Popov, T. A. Balan, Engineering Mechanics of Solids, Pearson Education, 2012
- 8. R. K. Bansal, Mechanics of solids, Laxmi Publications, 2004
- 9. P. N. Singh, P. K. Jha, Elementary Mechanics of Solids, Wiley Eastern Limited, 2012

Course Plan					
Module	Contents	Hours	Sem. Exam Marks		
	Introduction to analysis of deformable bodies – internal forces – method of sections – assumptions and limitations. Stress – stresses due to normal, shear and bearing loads – strength design of simple members. Definition of linear and shear strains.	3			
Ι	Material behavior – uniaxial tension test – stress-strain diagrams concepts of orthotropy, anisotropy and inelastic behavior – Hooke's law for linearly elastic isotropic material under axial and shear deformation	s v 3 15%			
	Deformation in axially loaded bars – thermal effects – statically indeterminate problems – principle of superposition - elastic strain energy for uniaxial stress.	4			
	Definition of stress and strain at a point (introduction to stress and strain tensors and its components only) – Poisson's ratio – biaxial and triaxial deformations – Bulk modulus - Relations between elastic	4	1.50/		
11	Torsion: Shafts - torsion theory of elastic circular bars – assumptions and limitations – polar modulus - torsional rigidity – economic cross-sections – statically indeterminate problems – shaft design for torsional load.	4	15%		
	FIRST INTERNAL EXAM				
	Beams- classification - diagrammatic conventions for supports and loading - axial force, shear force and bending moment in a beam	2			
ш	Shear force and bending moment diagrams by direct approach 3				
	Differential equations between load, shear force and bending moment. Shear force and bending moment diagrams by summation approach – elastic curve – point of inflection.	5	1370		
IV	Stresses in beams: Pure bending – flexure formula for beams assumptions and limitations – section modulus - flexural rigidity - economic sections – beam of uniform strength.	s - 4 15%			
	Shearing stress formula for beams – assumptions and limitations – design for flexure and shear.	4			
	SECOND INTERNAL EXAM				
V	Deflection of beams: Moment-curvature relation – assumptions and limitations - double integration method – Macaulay's method - superposition techniques – moment area method and conjugate beam ideas for simple cases.	6	20%		
	Transformation of stress and strains: Plane state of stress - equations of transformation - principal planes and stresses.	4			
	Mohr's circles of stress – plane state of strain – analogy between stress and strain transformation – strain rosettes	3			
VI	Compound stresses: Combined axial, flexural and shear loads – eccentric loading under tension/compression - combined bending and twisting loads.	4	20%		

Theory of columns: Buckling theory –Euler's formula for long columns – assumptions and limitations – effect of end conditions - slenderness ratio – Rankin's formula for intermediate columns.

END SEMESTER EXAM

Question Paper Pattern

Total marks: 100, Time: 3 hrs The question paper should consist of three parts **Part A**

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course No.	Course Name	L-T-P-Credits	Year of Introduction				
ME210	METALLURGY AND MATERIALS ENGINEERING	3-0-0-3	2016				
Prerequisite: nil							
Course Objective	SIDI ADINI		N A				
1 To provide fi	1. To provide fundamental science relevant to materials						
2. To provide ph	rysical concepts of atomic radius,	atomic structure, che	emical bonds, crystalline				
and non-cryst	talline materials and defects of c	crystal structures, gr	ain size, strengthening				
mechanisms, l	heat treatment of metals with meel	hanical properties and	l changes in structure				
3. To enable stud	dents to be more aware of the beh	avior of materials in	engineering applications				
and select the	materials for various engineering a	applications.					
4. To understand	properties of unknown material	la deformation ls and develop an a	awareness to apply this				
knowledge in	material design.	is and develop an a	iwareness to apply this				
		C					
Syllabus:-Chemic	cal bonds – crystallography- imp	perfections- crystalli	zation- diffusion- phase				
and non ferrous	allovs- fatigue-creen- basics ne	ed properties and	applications of modern				
engineering mater	rials.	ica, properties and	applications of modelin				
Expected outcom	a: At the end of the course studen	ts will be able to					
1 Identify the cr	vstal structures of metallic materia	ils will be able to					
2. Analyze the b	inary phase diagrams of alloys Fe-	Fe ₃ C, etc.					
3. Correlate the	microstructure with properties, pro-	cessing and performa	nce of metals.				
4. Recognize the	e failure of metals with structural cl	hange.					
5. Select materia	ls for design and construction.						
6. Apply core co	ncepts in materials science to solve	e engineering probler	ns.				
1 Paghayan	V. Material Science and Engineer	ing Prontice Hall 200	14				
2. Jose S and	Mathew E.V. Metallurgy and Ma	aterials Science, Penta	190n, 2011				
Reference	i Maile V E V, Metallargy and Ma	atoriais Science, i ena	.501, 2011				
1 Anderson	J.C. et.al., Material Science for En	gineers,Chapman and	l Hall,1990				
2 Clark and	Varney, Physical metallurgy for E	ngineers, <mark>Van Nost</mark> ra	nd,1964				
3. Reed Hill	E. Robert, Physical metallurgy prin	nciples, 4 th Edn. Ceng	gage Learning,2009				
4. Avner H S	Sidney, Introduction to Physical Me	etallurgy, Tata McGra	aw Hill,2009				
5. Callister V	Villiam. D., Material Science and H	Engineering, John Wi	ley,2014				
 Dieler George E, Mechanical Metallurgy, I ata McGraw Hill, 19/6 Higging P A Engineering Metallurgy next L ELDS 1009 							
8 Myers Ma	7. Higgins K.A Eligineering Metanurgy part - I – ELDS, 1990 8. Myers Marc and Krishna Kumar Chawla Mechanical behavior of materials. Combridge						
University press.2008							
9. Van Vlack - Elements of Material Science - Addison Wesley, 1989							
10. http://npte	l.ac.in/courses/113106032/1	•					
11. http://www	w.myopencourses.com/subject/prin	ciples-of-physical-m	etallurgy-2				
12. http://ocw	.mit.edu/courses/materials-science	-and-engineering/3-0	91sc-introduction-to-				

so 13. ht	lid-state-chemistry-fall-2010/syllabus/ tp://www.msm.cam.ac.uk/teaching/partIA.php				
	Course Plan				
Module	ADIAR Contents II KAL	Hours	Semester Exam. Marks		
	Earlier and present development of atomic structure; attributes of ionization energy and conductivity, electronegativity and alloying; correlation of atomic radius to strength; electron configurations; electronic repulsion Primary bonds: - characteristics of covalent, ionic and	AL			
Ι	metallic bond: attributes of bond energy, cohesive force, density, directional and non-directional and ductility. properties based on atomic bonding:- attributes of deeper energy well and shallow energy well to melting temperature, coefficient of thermal expansion - attributes of modulus of elasticity in metal cutting process -Secondary bonds:- classification- hydrogen bond and anomalous behavior of ice float on water, application- atomic mass unit and specific heat, application. <i>(brief review only, no University questions and internal assessment from these</i> <i>portions)</i> .	besive force, ctility. tes of deeper to melting - attributes of ss -Secondary d anomalous atomic mass view only, no nt from these 15%	15%		
	Crystallography:- Crystal, space lattice, unit cell- BCC, FCC, HCP structures - short and long range order - effects of crystalline and amorphous structure on mechanical properties.	1			
	Coordination number and radius ratio; theoretical density; simple problems - Polymorphism and allotropy.	1			
	Miller Indices: - crystal plane and direction (brief review) - Attributes of miller indices for slip system, brittleness of BCC, HCP and ductility of FCC - Modes of plastic deformation: - Slip and twinning.	1			
	Schmid's law, equation, critical resolved shear stress, correlation of slip system with plastic deformation in metals and applications.	1			
	Mechanism of crystallization: Homogeneous and heterogeneous nuclei formation, under cooling, dendritic growth, grain boundary irregularity.	1			
II	Effects of grain size, grain size distribution, grain shape, grain orientation on dislocation/strength and creep resistance - Hall - Petch theory, simple problems	1	15%		
	Classification of crystal imperfections: - types of dislocation - effect of point defects on mechanical properties - forest of dislocation, role of surface defects on crack initiation.	1			

	Burgers vector –dislocation source, significance of Frank Read source in metals deformation - Correlation of dislocation density with strength and nano concept, applications.	1		
	Significance high and low angle grain boundaries on dislocation – driving force for grain growth and applications during heat treatment.	ΑM		
	Polishing and etching to determine the microstructure and grain size.	AL		
	Fundamentals and crystal structure determination by $X - ray diffraction$, simple problems –SEM and TEM.	1		
	Diffusion in solids, Fick's laws, mechanisms, applications of diffusion in mechanical engineering, simple problems.	1		
	FIRST INTERNAL EXAMINATION			
	Phase diagrams: - Limitations of pure metals and need of alloying - classification of alloys, solid solutions, Hume Rothery's rule - equilibrium diagram of common types of binary systems: five types.	2		
III	Coring - lever rule and Gibb's phase rule - Reactions: - monotectic, eutectic, eutectoid, peritectic, peritectoid.	1		
	Detailed discussion on Iron-Carbon equilibrium diagram with microstructure and properties changes in austenite, ledeburite, ferrite, cementite, special features of martensite transformation, bainite, spheroidite etc.	1		
	Heat treatment: - Definition and necessity – TTT for a eutectoid iron–carbon alloy, CCT diagram, applications - annealing, normalizing, hardening, spheroidizing.	1	15%	
	Tempering:- austermpering, martempering and ausforming - Comparative study on ductility and strength with structure of pearlite, bainite, spherodite, martensite, tempered martensite and ausforming.	1		
	Hardenability, Jominy end quench test, applications- Surface hardening methods:- no change in surface composition methods :- Flame, induction, laser and electron beam hardening processes- change in surface composition methods :carburizing and Nitriding; applications.	2		

	Types of Strengthening mechanisms: - work hardening, equation - precipitation strengthening and over ageing- dispersion hardening.	1	
	Cold working: Detailed discussion on strain hardening; recovery; re-rystallization, effect of stored energy; re- crystallization temperature - hot working Bauschinger effect and attributes in metal forming.		15%
	Anoy steels. Effects of anoying elements on steel, dislocation movement, polymorphic transformation temperature, alpha and beta stabilizers, formation and stability of carbides, grain growth, displacement of the eutectoid point, retardation of the transformation rates, improvement in corrosion resistance, mechanical properties	AL	
IV	Nickel steels, Chromium steels etc Enhancement of steel properties by adding alloying elements: - Molybdenum, Nickel, Chromium, Vanadium, Tungsten, Cobalt, Silicon, Copper and Lead.	1	
	High speed steels:- Mo and W types, effect of different alloying elements in HSS	1	
	Cast irons: Classifications; grey, white, malleable and spheroidal graphite cast iron etc, composition, microstructure, properties and applications.	1	15%
	Principal Non ferrous Alloys: - Aluminum, Copper, Magnesium, Nickel, study of composition, properties, applications, reference shall be made to the phase diagrams whenever necessary.	1	
	SECOND INTERNAL EXAMINATION		
	Fatigue: - Stress cycles – Primary and secondary stress raisers - Characteristics of fatigue failure, fatigue tests, S-N curve.	1	
V	Factors affecting fatigue strength: stress concentration, size effect, surface roughness, change in surface properties, surface residual stress.	1	
	Ways to improve fatigue life – effect of temperature on fatigue, thermal fatigue and its applications in metal cutting	1	20%
	Fracture: – Brittle and ductile fracture – Griffith theory of brittle fracture – Stress concentration, stress raiser – Effect of plastic deformation on crack propagation.	1	
	transgranular, intergranular fracture - Effect of impact loading on ductile material and its application in forging, applications - Mechanism of fatigue failure.	1	

	Structural features of fatigue: - crack initiation, growth, propagation - Fracture toughness (definition only) - Ductile to brittle transition temperature (DBTT) in steels and structural changes during DBTT, applications.	1	
V1	Creep: - Creep curves – creep tests - Structural change:- deformation by slip, sub-grain formation, grain boundary sliding Mechanism of creep deformation - threshold for creep, prevention against creep - Super plasticity: need and applications Composites:- Need of development of composites - geometrical and spatial Characteristics of particles – classification - fiber phase: - characteristics, classifications - matrix phase:- functions – only need and characteristics of PMC, MMC, and CMC – applications of composites: aircraft applications, aerospace equipment and instrument structure, industrial applications of composites, marine applications, composites in the sporting goods industry, composite biomaterials		20%
	Modern engineering materials: - only fundamentals, need, properties and applications of, intermetallics, maraging steel, super alloys, Titanium – introduction to nuclear materials, smart materials and bio materials.	2	
	Ceramics:-coordination number and radius ratios- AX , A_mX_p , $A_mB_mX_p$ type structures – applications.	1	

Question Paper Pattern

sto

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course Number	. Course Name	L-T-P-Credi	ts In	Year of troduction
MP201	MACHINE TOOL TECHNOLOGY	4-0-0-4		2016
Prerequisit	te : Nil			
Course Ob To develop with them	jective basic knowledge of working of different machine t	tools and the c	operation	s associated
Syllabus	I INIVED ST	TV	11.	
Basic work lathe, shapin Abrasive m Estimation of Expected C	ing principle, configuration, specification and cl ng, planning and slotting machine, drilling machin achining process, study of different types of work of machining time	assification on the, milling ma tholding and	f machin thine an tool hold	ne tools like d broaching. ding devices.
i. Sele ii. Sele iii. Deci	ect a machine tool for a process ect alternatives for machining ide upon the cost and economics of machining	Ţ		
 References Hajra Choudhary,Elements of workshop technology, Vol. II, Media Promoters & Publications Chapman Workshop technology, Vol. II, III, ELBS P.N. Rao,Manufacturing Technology-Volume II,Tata McGraw Hill Lindberg, Processes and materials for manufacture, Prentice Hall. ASME Tool Engineering Handbook H.M.T. Production Technology, Tata McGraw Hill 				
	Course Plan			G
Module	Contents		Hours	Sem. exam marks
I G	Lathe - Different classifications - constructional driving mechanisms - tool and work holding operations - speed, feed, depth of cut and mac calculations – specifications - Capstan, turret and lathes - constructional features - tool layout - too holding devices – operations	features - devices - hining time d automatic of and work	12	15%
II (Milling, Drilling and boring machines - Classifica. constructional features - driving mechanisms - tool holding devices - types of tools - operations – spect	ntion - and work ifications	8	15%

III	Shaper, planer, slotter and broaching machines - Different types and their field of application - constructional features - driving mechanisms - tools used - tool and work holding devices - operations – specifications	8	15%	
IV	Abrasives and abrasive tools - types of abrasives and their properties - manufacture of grinding wheels - types of bond, grit, grade, structure - nomenclature of a grinding wheel - selection of a grinding wheel, dressing truing and balancing of grinding wheels - Grinding machines - classification of grinding machines - constructional features - tool and work holding devices - operations - cylindrical, surface, centre-less, thread, form, tool and cutter grinding – specifications -	10	15%	
	Second Internal Exam			
V	Gear generation methods - Gear shaping, gear hobbing, gear shaving, gear grinding, gear lapping - bevel gear generators	10	20%	
VI	Surface finishing lapping, honing, super finishing -equipments - tolerance and finish, buffing - applications	8	20%	
End Semester Exam				

Question Paper Pattern

Total marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Estd.

2014

Course Numbe	e er	Course Name	L-T-P-Credits	Year of In	troduction
MP231	1	Production Engineering drawing	0-0-3-1	20)15
Number Course Name Deference real of Infroduction MP231 Production Engineering drawing 0-0-3-1 2015 The evaluation of the course can be, 1 Internal evaluation should be for 100 marks, first internal quiz for 40 marks form Module I and II, second internal quiz for 40 marks from Module III and 20 marks for the internal class works 2. The first internal examination is based on the first and the second module and the second internal examination is based on the third module alone. 3 3. The end semester examination is for 50 marks of 2 hour duration and includes only the first and the second semester. Course Objective The objective of this course is to make students understand the principles and requirements of machine & production drawings. This course will enable the students to prepare the individual and assembled parts of the machine as per the standards. Syllabus Introduction to production drawing, IS standards, representation of machine components as per IS code: SP-46, Limits, fits and tolerance, Standard Fasteners & Rivets Introduction to CAD, part and assembly drawing in CAD, preparation of manufacturing					
Expected Upon succ of the asse	Outc cessfu emble	ome I completion of the course the student I machine parts as per the standards ir	will be able to prep ndividually.	pare the detai	iled drawing
 References Narayana K. L., Kannaiah P., VenkatataReaddy K., "Machine Drawing", 2ndEdition, New age international Publishers, Delhi, 2008, ISBN 81-224-1917-8. Bhat N. D., Panchal , "Machine Drawing", Charotar Pub. House, 2000.ISBN: 9380358466. Gill P. S., "A Text book of Machine Drawing", Revised Edition K. Kataria and Sons, New Delhi, 2008, ISBN: 81-85749-79-5. PI Varghese & K C John 					
Course Plan					
Module		Contents		Hours	Sem. exam marks
Ι	Con Dim Con code tapp	ventions in Machine Drawing ensioning technique for mac ventional representation of machine of SP-46 such as screw threads, spr ed holes, knurling parts, splined sha	chine componen components as per rings, gears, bearin fts, tapers, chamfe	ts, 9 IS 9 ng, rs,	50%

	countersunk and counter bores, keys, & welded joints, Surface Roughness. Introduction, terminology, machining symbols with all parameters, roughness values (Ra) and roughness grade numbers, indicating surface roughness on drawing.		
	Tolerances & Fits		
	Definitions applied to tolerances, types of tolerance, types of fits, fit system. Geometrical tolerances – Nomenclature, tolerance frame, types of geometrical tolerances & their symbols, indicating geometric tolerances on drawing		
	Standard Fasteners & Rivets.		
Π	Thread terminology, thread forms, thread designations, single and multi-start threads, right and left hand threads, types of screws, bolts and nuts, nut locking arrangements using pins, washers & screws. Rivets: Forms & proportions of rivet heads, different types of riveted joints.	9	50%
First Internal Exam			
III	Introduction to the Graphic package, Study of the graphics fundamental tools such as line, circle, rectangle, ellipse, arc, spline etc Editing Tools. Introduction to part and assembly drawing, examples- Cotter Joint, Knuckle Joint, Flange Joint, Rigid and Flexible Coupling. Drawing template should include Title block, part list / bill of material, revision block etc.	12	Internal
Second Internal Exam			
IV	Revolving Centers, Machine Vice, Tool post, Screw Jack, jigs & fixtures, Lathe tailstock Drawing template should include Title block, part list / bill of material, revision block etc.	12	Internal
End Semester Exam			