Course N	No. Course Name	L-T-P - Credits		Year of roduction
MA20	LINEAR ALGEBRA AND COMPLEX ANALYSIS	3-1-0-4		2016
Prerequis	ite : Nil			
Course O				
	OBJECTIVES			
• To ma	equip the students with methods of solving a gener familiarize them with the concept of Eigen values ny applications in Engineering. understand the basic theory of functions of a comp	and diagonalization of a r	natrix w	
Syllabus	LINIVEDS	ITV		
•	y of complex functions-Complex differentiation		-Compl	ex
integration	n-System of linear equations-Eigen value probl	em		
Fynaeta	d outcome .			
	of the course students will be able to			
(i) solve an	y given system of linear equations			
	Eigen values of a matrix and how to diagonalize a	matrix		
	y analytic functions and Harmonic functions.			
	e real definite Integrals as application of Residue T conformal mappings(vi) find regions that are map		rmation	6
Text Bo		bed under certain Traisio	mation	8
	eyszig: Advanced Engineering Mathematics, 10 th ed	1 Wiley		
Referen				
	Zill&Patric D Shanahan-A first Course in Complex	x Analysis with Applicati	ons-Jon	es&Bartlet
Publishers				
	wal. Higher Engineering Mathematics, Khanna Pul			
-	z, Linear Algebra,3e (Schaums Series)McGraw Hi variables introduction and applications-second edi		ridgo Du	blightion
4.Complex	variables infroduction and applications-second edi	uon-wark.J.Ownz-Camo	lluge ru	Uncation
	Course Pla	m		
	1 N 14		-	Sem. Exam
Module	Contents	E	lours	Marks
	<u>Complex differentiation Text 1[13.3,13.4]</u> Limit, continuity and derivative of complex funct	tions	3	
	Analytic Functions 2014		2	
Ι	Cauchy–Riemann Equation(Proof of sufficient co analyticity & C R Equations in polar form not req Equation		2	
	Harmonic functions, Harmonic Conjugate		2	15%
	Conformal mapping: Text 1[17.1-17.4]			10/0
	Geometry of Analytic functions Conformal Mappi	ng,	1	
II				
	Mapping $w = z^2$ conformality of $w = e^z$.		2	
				15%

The mapping $w = z + \frac{1}{z}$ 1Properties of $w = \frac{1}{z}$ 1Circles and straight lines, extended complex plane, fixed points1Special linear fractional Transformations, Cross Ratio, Cross Ratio property-Mapping of disks and half planes3Conformal mapping by $w = \sin z \& w = \cos z$ (Assignment: Application of analytic functions in Engineering)3FIRST INTERNAL EXAMINATIONFIRST INTERNAL EXAMINATION15%IIIComplex Integration. Text 1[14.1-14.4] [15.4&16.1] Definition Complex Line Integrals, First Evaluation Method, Second Evaluation Method Cauchy's Integral Theorem (without proof), Independence of path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof) Cauchy's Integral Formula- Derivatives of Analytic Functions(without proof)Application of derivative of Analytical Functions Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)2
Z Circles and straight lines, extended complex plane, fixed points Image: Special linear fractional Transformations, Cross Ratio property-Mapping of disks and half planes 3 Special linear fractional Transformations, Cross Ratio property-Mapping of disks and half planes 3 3 Conformal mapping by $w = \sin z \& w = \cos z$ 3 3 (Assignment: Application of analytic functions in Engineering) 3 3 FIRST INTERNAL EXAMINATION Ethers Integration. Text 1[14.1-14.4] [15.4&16.1] Definition Complex Line Integrals, First Evaluation Method, Second Evaluation Method 2 Evaluation Method 2 15% III Cauchy's Integral Theorem(without proof), Independence of path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof) 2 Gauchy's Integral Formula- Derivatives of Analytic Functions(without proof), Application of derivative of Analytical Functions 2 Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof) 2
Special linear fractional Transformations, Cross Ratio, Cross Ratio 3 property-Mapping of disks and half planes 3 Conformal mapping by $w = \sin z \& w = \cos z$ 3 (Assignment: Application of analytic functions in Engineering) 3 FIRST INTERNAL EXAMINATION EINST INTERNAL EXAMINATION INTEGNAL EXAMINATION INTEGNAL EXAMINATION INTEGNAL EXAMINATION INTEGNAL EXAMINATION <
property-Mapping of disks and half planes 3 Conformal mapping by $w = \sin z \& w = \cos z$ 3 (Assignment: Application of analytic functions in Engineering) 3 FIRST INTERNAL EXAMINATION FIRST INTERNAL EXAMINATION Complex Integration. Text 1[14.1-14.4] [15.4&16.1] Definition Complex Line Integrals, First Evaluation Method, Second 2 Evaluation Method 2 Couchy's Integral Theorem(without proof), Independence of path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof) 2 III Cauchy's Integral Formula- Derivatives of Analytic Functions(without proof)Application of derivative of Analytical Functions 2 Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof) 2
Image: Construction of analytic functions in Engineering) 3 Image: Construction of Engineering) FIRST INTERNAL EXAMINATION Image: Complex Integration. Text 1[14.1-14.4] [15.4&16.1] Definition Complex Line Integrals, First Evaluation Method, Second Evaluation Method 2 Cauchy's Integral Theorem(without proof), Independence of path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof) 2 15% Image: Construction of Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof) 2 15%
functions in Engineering)FIRST INTERNAL EXAMINATIONFIRST INTERNAL EXAMINATIONComplex Integration. Text 1[14.1-14.4] [15.4&16.1]Definition Complex Line Integrals, First Evaluation Method, Second2Evaluation Method2Cauchy's Integral Theorem(without proof), Independence of path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof)2IIIConnected Domains (without proof) Cauchy's Integral Formula- Derivatives of Analytic Functions(without proof)Application of derivative of Analytical Functions Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)2
Complex Integration. Text 1[14.1-14.4] [15.4&16.1] Definition Complex Line Integrals, First Evaluation Method, Second Evaluation Method Cauchy's Integral Theorem(without proof), Independence of path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof) Cauchy's Integral Formula- Derivatives of Analytic Functions(without proof)Application of derivative of Analytical Functions Taylor and Maclaurin series(without proof)2III22
Definition Complex Line Integrals, First Evaluation Method, Second Evaluation Method Cauchy's Integral Theorem(without proof), Independence of path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof) Cauchy's Integral Formula- Derivatives of Analytic Functions(without proof)Application of derivative of Analytical Functions Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)215%
Evaluation Method Cauchy's Integral Theorem(without proof), Independence of path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof) Cauchy's Integral Formula- Derivatives of Analytic Functions(without proof)Application of derivative of Analytical Functions Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)215%
IIICauchy's Integral Theorem(without proof), Independence of path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof) Cauchy's Integral Formula- Derivatives of Analytic Functions(without proof)Application of derivative of Analytical Functions Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)215%2
IIIpath(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof) Cauchy's Integral Formula- Derivatives of Analytic Functions(without proof)Application of derivative of Analytical Functions Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)15%2
IIIConnected Domains (without proof) Cauchy's Integral Formula- Derivatives of Analytic Functions(without proof)Application of derivative of Analytical Functions Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)22
Functions(without proof)Application of derivative of Analytical Functions Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)22
Functions Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)
Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)2
series, i racical methods (without proof)
Laurent's series (without proof)
Residue Integration Text 1 [16.2-16.4] 15%
Singularities, Zeros, Poles, Essential singularity, Zeros of analytic 2
functions
Residue Integration Method, Formulas for Residues, Several 4
singularities inside the contour Residue Theorem.
IV
Evaluation of Real Integrals (i) Integrals of rational functions of 3
$\sin\theta$ and $\cos\theta$ (ii) Integrals of the type $\int_{0}^{\infty} f(x) dx$ (Type I, Integrals
from 0 to ∞)
(Assignment : Application of Complex integration in Engineering) SECOND INTERNAL EXAMINATION
SECOND INTERNAL EXAMINATION 20%
Linear system of Equations Text 1(7.3-7.5)
Linear systems of Equations, Coefficient Matrix, Augmented Matrix 1
V Gauss Elimination and back substitution, Elementary row operations,
Row equivalent systems, Gauss elimination Three possible cases
Row Echelon form and Information from it. 5

	Linear independence-rank of a matrix	2	
	Vector Space-Dimension-basis-vector space R ³		
	Solution of linear systems, Fundamental theorem of non- homogeneous linear systems(Without proof)-Homogeneous linear systems (Theory only	1	
	Matrix Eigen value Problem Text 1.(8.1,8.3 &8.4)		20%
	Determination of Eigen values and Eigen vectors-Eigen space	3	
VI	Symmetric, Skew Symmetric and Orthogonal matrices –simple properties (without proof)	2	
	Basis of Eigen vectors- Similar matrices Diagonalization of a matrix- Quadratic forms- Principal axis theorem(without proof)	4	
	(Assignment-Some applications of Eigen values(8.2))		
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

2014

Any two questions from each part have to be answered.

COURSE C	CODE	COURSE NAME	L-T-P-C		YEAR C RODUC	
EC201	L	NETWORK THEORY	3-1-0-4		2016	
Prerequisite	e: Nil					
Course obje	ctives:					
To stTo st	udy tim udy the levelop	students capable of analyzing any lin e domain, phasor and Laplace transfo transient response of networks subject understanding of the concept of r	orm methods of li ct to test signals.	near circ	uit analy	rsis.
Syllabus:		UNIVER	0111			
equations by	using I the sir	k, Laplace transform, Inverse Lap Laplace transforms, Transient analysingle port and two ports, Parameters	s of RL, RC, and	RLC ne	etworks,	Network
-		urse students will be able to analyze t	he linear time inv	ariant el	ectrical o	circuits.
Text Books						
		ork Analysis and Synthesis, 2/e, McC Network Analysis, 3/e, PHI, 2011.	Graw-Hill, 2015.			
References:				_		
Hill, 2012. Choudha3. Franklin4. Pandey S	5. ry R., N F. Kuo, 5. K., Fu	Shyammohan, Circuits and Network etworks and Systems, 2/e, New Age Network Analysis and Synthesis, 2/e ndamentals of Network Analysis and tric Circuits – Schaum's Outline Seri	International, 201 e, Wiley India, 20 I Synthesis, 1/e, S	13. 12. . Chand		cGraw-
	,	Course Plan		J		
Module		Course content (48 hr	s)		Hours	Sem. Exam Marks
I]		tion to circuit variables and circui ff's Laws, Independent and dependent mations			3	15
		t topology, Network graphs, Trees, Ir natrix and Cut-set matrix	ncidence matrix,		2	
:	analysis	methods applied to dc and phasor c of network containing independent a	nd dependent sou	irces	3	
1	theorem	theorems applied to dc and phas , Norton's theorem, Superposition , Millman's theorem, Maximum pov	theorem, Recip	procity	6	15

	Laplace transform, properties	4	
	Laplace Transforms and inverse Laplace transform of common	-7	
	functions, Important theorems: Time shifting theorem, Frequency		
	shifting theorem, Time differentiation theorem, Time integration		
	theorem, s domain differentiation theorem, s domain integration		
	theorem, Initial value theorem, Final value theorem		
	FIRST INTERNAL EXAM		
III	Partial Fraction expansions for inverse Laplace transforms,	3	
	Solution of differential equations using Laplace transforms	A	15
	Transformation of basic signals and circuits into s-domain	2	
	Transient analysis of RL, RC, and RLC networks with impulse, step,	3	
	pulse, exponential and sinusoidal inputs	- A	
	Analysis of networks with transformed impedance and dependent	3	
	sources.		
IV	Network functions for the single port and two ports, properties of	3	15
	driving point and transfer functions,		
	Poles and Zeros of network functions, Significance of Poles and		
	Zeros		_
	Time domain response from pole zero plot, Impulse Response	1	
	Network functions in the sinusoidal steady state, Magnitude and	3	
	Phase response		
	SECOND INTERNAL EXAM		
V	Parameters of two port network: impedance, admittance,	5	20
	transmission and hybrid parameters, Interrelationship among		
	parameter sets		
	Series and parallel connections of two port networks	2	
	Reciprocal and Symmetrical two port network	2	-
	Characteristic impedance, Image impedance and propagation	2	
	constant (derivation not required)		
VI	Resonance: Series resonance, bandwidth, Q factor and Selectivity,	3	20
	Parallel resonance ESTC.		
	Coupled circuits: single tuned and double tuned circuits, dot	4	
	convention, coefficient of coupling, Analysis of coupled circuits		
	END SEMESTER EXAM		

2014

Question Paper Pattern

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 30% for theory and 70% for logical/numerical problems, derivation and proof.

COURS CODE	E COURSE NAME	L-T-P-C	YE INTRO	EAR OI DDUCT	
EC203	SOLID STATE DEVICES	3-1-0-4		2016	
Prerequisi	te: Nil		L		
Course ob	jectives:				
• To prov	vide an insight into the basic semiconduc	tor concepts			
• To pro	vide a sound understanding of current	t semiconductor a	levices and	techno	ology to
appreci	ate its applications to electronics circuits	and systems	TA	N.A	
Syllabus:	Elemental and compound semiconductor	rs, Fermi-Dirac di	stribution, H	Equilibr	ium and
	te conditions: Equilibrium concentrat				
	e of carrier concentration, Carrier tran				
	, Excess carriers in semiconductors , PN		-		
	nd charge density at the junction, energy				
	e equation, electron and hole component linear model of a diode , effect of				
	es, electrical breakdown in pn junct				
-	ipolar junction transistor, metal insulator				
Expected of	· · ·				
1	ts should have a good knowledge in sem	iconductor theory	and electron	nic devi	ices.
Text Bool					
1. Ben G.	Streetman and Sanjay Kumar Banerjee,	Solid State Electro	onic Device	s, Pears	on, 6/e,
2010					, ,
2. Achuth	an, K N Bhat, Fundamentals of Semicon	d <mark>u</mark> ctor Devices, 1	e, McGraw	Hill,20	15
Reference					
	A.S., Introduction to Semiconductor Mat		-	lia, 5/e,	2008
2. Sze S.N	A., Physics of Semiconductor Devices, J	o <mark>hn</mark> Wiley, 3/e, 20	05		
3. Neame	n, Semiconductor Physics and Devices, I	McGraw Hill, 4/e,	2012		
4. Pierret,	Semiconductor Devices Fundamentals,	Pearson, 2006			
5. Rita Jo	hn, Solid State Devices, McGraw-Hill, 2	014			
6. Bhattac	charya .Shar <mark>ma, Solid State Electro</mark> nic D	evices, Oxford Un	iversity Pre	<mark>ss,</mark> 2012	2
7. Dasgup	ota and Dasgupta, Semiconductor Device	es : Modelling and	Technolog	y (PHI)	I
	Course Plan				
Module	Course content (4	8hrs)]	Hours	Sem.
					Exam
	Elemental and someoned some	014	ni Dina a	4	Marks
	Elemental and compound semic distribution, Equilibrium and steady sta	,	ni-Dirac	4	15
	concentration of electrons and holes, T				
	carrier concentration	emperature depend			
	Carrier transport in semiconductors,	drift, conductiv	ity and	5	
	mobility, variation of mobility with temp			-'	
	High Field Effects, Hall effect	1	-		
	Excess carriers in semiconductors: Gen			9	15
	mechanisms of excess carriers, quasi				
	Einstein relations, Continuity equa	tions, Diffusion	length,		

Gradient of quasi Fermi level

FIRST INTERNAL EXAM

III	PN junctions : Contact potential, Electrical Field, Potential and Charge density at the junction, Energy band diagram, Minority carrier distribution, Ideal diode equation, Electron and hole component of current in forward biased p-n junction, piecewise linear model of a diode effect of temperature on V-I characteristics	9	15
IV	Diode capacitances, switching transients, Electrical Breakdown in PN junctions, Zener and avalanche break down (abrupt PN junctions only), Tunnel Diode basics only, Metal Semiconductor contacts, Ohmic and Rectifying Contacts, current voltage characteristics	9 M	15
	SECOND INTERNAL EXAM	ΛT	
V	Bipolar junction transistor, current components, Minority carrier distributions, basic parameters, Evaluation of terminal currents (based on physical dimensions), Transistor action, Base width modulation	9	20
VI	Metal Insulator semiconductor devices: The ideal MOS capacitor, band diagrams at equilibrium, accumulation, depletion and inversion, surface potential, CV characteristics, effects of real surfaces, work function difference, interface charge, threshold voltage MOSFET: Output characteristics, transfer characteristics, sub threshold characteristics, MOSFET scaling (basic concepts)	9	20
	FinFET-structure and operation	1	
	END SEMESTER EXAM		

Question Paper Pattern

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 70 % for theory, derivation, proof and 30% for logical/numerical problems.

2014

COUR COD		YEAR INTRODU	
EC20		2016	
Prerequi	site: Nil		
-	bjectives:		
	o develop the skill of analysis and design of various analog of	circuits using	discrete
	ectronic devices as per the specifications.		
Syllabus	ADI ADDITI IZAT	A & A	
small sig frequency amplifier and mult equivaler MOSFET Expected • A el Text Boo • So	edra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford U	hybrid π mod mplifiers, Wi olifiers, Sweep circuits, sma Analysis of m design the Jniversity Pre	del, low de band o circuits ill signal ultistage different
	lillman J. and C. Halkias, Integrated Electronics, 2/e, McGraw-Hil	l, 2010	
Reference	eas: eamen D., Electronic Circuits - Analysis and Design, 3/e, TMH, 20	0	
20 3. Sj	ashid M. H., Microelectronic Circuits - Analysis and Design, Ceng 011 pencer R. R. and M. S. Ghausi, Introduction to Electronic Circuit I azavi B., Fundamentals of Microelectronics, Wiley, 2015		
	Course Plan		
Module	Course content (48 hrs)	Hours	Sem. Exam Marks
	RC Circuits: Response of high pass and low pass RC circuits to	5	
Ι	sine, step, pulse and square wave inputs, Differentiator, Integrato		15
	BJT biasing circuits: Types, Q point, Bias stability, Stability	5	
	factors, RC coupled amplifier and effect of various components, Concept of DC and AC load lines, Fixing of operating point,		
	Classification of amplifiers		
II	Small signal analysis of CE, CB and CC configurations using sm signal hybrid π model (gain, input and output impedance). Small signal analysis of BJT amplifier circuits, Cascade amplifier	all 7	15
	FIRST INTERNAL EXAM	.	•
III	High frequency equivalent circuits of BJT, Short circuit current gain, cutoff frequency, Miller effect, Analysis of high frequency response of CE, CB and CC amplifiers	4	15
	Wide band amplifier: Broad banding techniques, low frequen and high frequency compensation, Cascode amplifier.	cy 4	
IV	Feedback amplifiers: Effect of positive and negative feedback gain, frequency response and distortion, Feedback topologies a		15

	its effect on input and output impedance, Feedback amplifier			
	circuits in each feedback topologies (no analysis required)			
	Oscillators & Tuned Amplifiers: Classification of oscillators,	6		
	Barkhausen criterion, Analysis of RC phase shift and Wien bridge			
	oscillators, Working of Hartley, Colpitts and Crystal oscillators;			
	Tuned amplifiers, synchronous and stagger tuning			
	SECOND INTERNAL EXAM			
V	Power amplifiers: Classification, Transformer coupled class A	6	20	
	power amplifier, push pull class B and class AB power amplifiers,	N A		
	efficiency and distortion, Transformer-less class B and Class AB	$1 \vee 1$		
	power amplifiers, Class C power amplifier (no analysis required)			
	Switching Circuits: Simple sweep circuit, Bootstrap sweep circuit, 5			
	Astable, Bistable, and Monostable multivibrators, Schmitt Trigger	h. And		
VI	Transistor based voltage regulator: Design and analysis of shunt and	4	20	
	series voltage regulator, load and line regulation, Short circuit	_		
	protection			
	MOSFET amplifiers: Biasing of MOSFET amplifier, DC analysis of	5		
	single stage MOSFET amplifier, small signal equivalent circuit.			
	Small signal voltage and current gain, input and output impedances			
	of CS configuration, MOSFETCascade amplifier			
	END SEMESTER EXAM			

Question Paper Pattern

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 60 % for theory, derivation, proof and 40% for logical/numerical problems.

COUR COD		COURSE NAME L-T-P-C	YEAI INTROD	
EC20		LOGIC CIRCUIT DESIGN 3-0-0-3	20	
Prerequi	site:Ni			
Course o				
 To ex To se To to to the set of the set	o introd spressio o outlin equentia o study o design o design : 1 Numl	e the formal procedures for the analysis and design of combinati l circuits the fundamentals of HDL n and implement combinational circuits using basic programmab n and implement synchronous sequential circuits per Systems, Boolean algebra, Combinational Logic, HDL c	onal circuit le blocks	s and
		ogic Devices, Sequential Logic, Sequential Circuits		
Expected				
		ld able to:		
•		bus positional number systems and binary codes		
11.0		n algebra in logic circuit design national and sequential circuits		
_		plement digital systems using basic programmable blocks		
)		ious digital systems using HDL		
Text Boo				
1. D	onald E	O Givone, Digital Principles and Design, Tata McGraw Hill, 2003 Vakerly, Digital Design Principles and Practices, Pearson Prentice		1
1.Ronald 2.Thoma 3.Moris 4.John M 5.David	as L Flo Mano, A Yarbi Money	ci, Digital Systems, Pearson Education, 11 th edition,2010 byd, Digital Fundamentals, Pearson Education, 8 th edition 2009 Digital Design, Prentice Hall of India, 3 rd edition, 2002 rough, Digital Logic Applications and Design, Cenage learning, 2 Harris, Sarah L Harris, Digital Design and Computer Architectu Elsevier, 2009		
		Course Plan		
Modul e		Course content (42 hrs)	Hours	Sem. Exam Marks
Ι	Numb	er systems- decimal, bin <mark>ary, octal,</mark> hex <mark>a decimal, b</mark> ase conversion	n 2	15
		d 2's complement, signed number representation arithmetic, binary subtraction using 2's complement	2	
	•	v codes (grey, BCD and Excess-3), Error detection and correcting : Parity(odd, even), Hamming code (7,4), Alphanumeric codes :	g 2	
Π	functio	expressions, Boolean laws, Duality, De Morgan's law, Logic ons and gates	2	15
	Canon	ical forms: SOP, POS, Realisation of logic expressions using K-	2	

	map (2,3,4 variables)		
	Design of combinational circuits – adder, subtractor, 4 bit adder/subtractor, BCD adder, MUX, DEMUX, Decoder,BCD to 7 segment decoder, Encoder, Priority encoder, Comparator (2/3 bits)	4	
	FIRST INTERNAL EXAM		
III	Introduction to HDL : Logic descriptions using HDL, basics of modeling (only for assignments)	2	0
	Logic families and its characteristics: Logic levels, propagation delay, fan in, fan out, noise immunity, power dissipation, TTL subfamilies	1	15
	NAND in TTL (totem pole, open collector and tri-state), CMOS:NAND, NOR, and NOT in CMOS, Comparison of logic families (TTL,ECL,CMOS) in terms of fan-in, fan-out, supply voltage, propagation delay, logic voltage and current levels, power dissipation and noise margin	2	
	Programmable Logic devices - ROM, PLA, PAL, implementation of simple circuits using PLA	2	
IV	Sequential circuits - latch, flip flop (SR, JK, T, D), master slave JK FF, conversion of FFs, excitation table and characteristic equations	3	15
	Asynchronous and synchronous counter design, mod N counters, random sequence generator	5	
	SECOND INTERNAL EXAM		
V	Shift Registers - SIPO, SISO, PISO, PIPO, Shift registers with parallel LOAD/SHIFT Shift register counter - Ring Counter and Johnson Counter	3	20
	Mealy and Moore models, state machine ,notations, state diagram, state table, transition table, excitation table, state equations	3	
VI	Construction of state diagram – up down counter, sequence detector	3	20
	Synchronous sequential circuit design - State equivalence	2	l
	State reduction – equivalence classes, implication chart	2	l
	END SEMESTER EXAM		

Assignments:

- 1. Simple combinational circuit design using MUX, DEMUX, PLA & PAL
- 2. HDL simulation of circuits like simple ALU, up-down counter, linear feedback shift register, sequence generator

2014

Question Paper Pattern

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 50 % for theory, derivation, proof and 50% for logical/numerical problems.

Course code	Course Name	L-T-P - Credits	Year of			
			Introduction			
HS200	Business Economics	3-0-0-3	2016			
Prerequisite: Nil						

Course Objectives

- To familiarize the prospective engineers with elementary Principles of Economics and Business Economics.
- To acquaint the students with tools and techniques that are useful in their profession in Business Decision Making which will enhance their employability;
- To apply business analysis to the "firm" under different market conditions;
- To apply economic models to examine current economic scenario and evaluate policy options for addressing economic issues
- To gain understanding of some Macroeconomic concepts to improve their ability to understand the business climate;
- To prepare and analyse various business tools like balance sheet, cost benefit analysis and rate of returns at an elementary level

Syllabus

Business Economics - basic concepts, tools and analysis, scarcity and choices , resource allocation, marginal analysis, opportunity costs and production possibility curve. Fundamentals of microeconomics - Demand and Supply Analysis, equilibrium, elasticity, production and production function, cost analysis, break-even analysis and markets. Basics of macroeconomics - the circular flow models, national income analysis, inflation, trade cycles, money and credit, and monetary policy. Business decisions - investment analysis, Capital Budgeting decisions, forecasting techniques and elementary Balance Sheet and taxation, business financing, international investments

Expected outcome.

A student who has undergone this course would be able to

- i. make investment decisions based on capital budgeting methods in alignment with microeconomic and macroeconomic theories.
- ii. able to analyse the profitability of the firm, economy of operation, determination of price under various market situations with good grasp on the effect of trade cycles in business.
- iii. gain knowledge on Monetary theory, measures by RBI in controlling interest rate and emerging concepts like Bit Coin.
- iv. gain knowledge of elementary accounting concepts used for preparing balance sheet and interpretation of balance sheet

Text Books

- 1. Geetika, Piyali Ghosh and Chodhury, Managerial Economics, Tata McGraw Hill, 2015
- 2. Gregory Mankiw, Principles of Macroeconomics, Cengage Learning, 2006.
- 3. M.Kasi Reddy and S.Saraswathi, *Economics and Financial Accounting*. Prentice Hall of India. New Delhi.

References:

- 1. Dornbusch, Fischer and Startz, Macroeconomics, McGraw Hill, 11th edition, 2010.
- 2. Khan M Y, Indian Financial System, Tata McGraw Hill, 7th edition, 2011.
- 3. Samuelson, Managerial Economics, 6th edition, Wiley
- 4. Snyder C and Nicholson W, *Fundamentals of Microeconomics*, Cengage Learning (India), 2010.
- 5. Truett, Managerial Economics: Analysis, Problems, Cases, 8th Edition, Wiley
- 6. Welch, *Economics: Theory and Practice* 7th Edition, Wiley
- 7. Uma Kapila, Indian Economy Since Independence, 26th Edition: A Comprehensive and Critical Analysis of India's Economy, 1947-2015
- 8. C Rangarajan, *Indian Economy, Essays on monetary and finance*, UBS Publishers'Distributors, 1998
- 9. A.Ramachandra Aryasri, *Managerial Economics and Financial Analysis*, Tata McGraw-Hill, New Delhi.
- 10. Dominick Salvatore, *Managerial Economics in Global Economy*, Thomas Western College Publishing, Singapore.
- 11. I.M. Pandey, Financial Management, Vikas Publishing House. New Delhi.
- 12. Dominick Salvatore, *Theory and Problems of Micro Economic Theory*. Tata Mac Graw-Hill, New Delhi.
- 13. T.N.Hajela. Money, Banking and Public Finance. Anne Books. New Delhi.
- 14. G.S.Gupta. Macro Economics-Theory and Applications. Tata Mac Graw-Hill, New Delhi.
- 15. Yogesh, Maheswari, Management Economics, PHI learning, NewDelhi, 2012
- 16. Timothy Taylor, Principles of Economics, 3rd edition, TEXTBOOK MEDIA.
- 17. Varshney and Maheshwari. Managerial Economics. Sultan Chand. New Delhi

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
I	Business Economics and its role in managerial decision making- meaning-scope-relevance-economic problems-scarcity Vs choice (2 Hrs)-Basic concepts in economics-scarcity, choice, resource allocation- Trade-off-opportunity cost-marginal analysis- marginal utility theory, Law of diminishing marginal utility -production possibility curve (2 Hrs)	4	15%
II	Basics of Micro Economics I Demand and Supply analysis- equillibrium-elasticity (demand and supply) (3 Hrs.) -Production concepts-average product-marginal product-law of variable proportions- Production function-Cobb Douglas function-problems (3 Hrs.)	6	15%
	FIRST INTERNAL EXAMINATION		
III	Basics of Micro Economics II Concept of costs-marginal, average, fixed, variable costs-cost curves-shut down point-long run and short run (3 Hrs.)- Break Even Analysis-Problem-Markets-Perfect Competition, Monopoly and Monopolistic Competition, Oligopoly-Cartel and collusion (3 Hrs.).	6	15%
IV	Basics of Macro Economics - Circular flow of income-two sector and multi-sector models- National Income Concepts-Measurement methods-problems-Inflation, deflation (4 Hrs.)-Trade cycles-Money- stock and flow concept-Quantity theory of money-Fischer's Equation and Cambridge Equation -velocity of circulation of money-credit control methods-SLR, CRR, Open Market Operations-Repo and Reverse Repo rate-emerging concepts in money-bit coin (4 Hrs.).	8	15%

SECOND INTERNAL EXAMINATION			
v	Business Decisions I-Investment analysis-Capital Budgeting-NPV,		20%
	IRR, Profitability Index, ARR, Payback Period (5 Hrs.)- Business		
	decisions under certainty-uncertainty-selection of alternatives-risk	9	
	and sensitivity- cost benefit analysis-resource management (4 Hrs.).	-	
VI	Business Decisions II Balance sheet preparation-principles and		20%
	interpretation-forecasting techniques (7 Hrs.)-business financing-		
	sources of capital- Capital and money markets-international	9	
	financing-FDI, FPI, FII-Basic Principles of taxation-direct tax,		
	indirect tax-GST (2 hrs.).	1	
END SEMESTER FXAM			

END SEMESTER EXAM

Question Paper Pattern

Max. marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION	
EC231	Electronic Devices & Circuits Lab	0-0-3-1	2016	
Prerequisite: Should	have registered for EC205 Electronic circuits	S		
Course objectives:				
ů.	orking of analog electronic circuits.	A T A A		
	implement analog circuits as per the specific	eations using disc	rete electronic	
components.	implement analog encans as per the specific	autons asing disc		
	(12 Mandatory Experiments)	IL A		
-	racteristics of rectifier and zener diodes	TV	- Amer	
2. RC inte	egrating and differentiating circuits (Transier	nt analysis with c	lifferent inputs and	
frequer	icy response)			
3. Clippir	g and clamping circuits (Transients and trans	sfer characteristi	cs)	
4. Fullwa	ve Rectifier -with and without filter- ripple fa	actor and regulat	ion	
5. Simple	Zener voltage regulator (load and line regula	ation)		
6. Charac	teristics of BJT in CE configu <mark>rat</mark> ion and eval	luation of parame	eters	
7. Charac	teristics of MOSFET in CS configuration and	d evaluation of p	arameters	
8. RC cou	pled CE amplifier - frequency response char	cacteristics		
9. MOSF	ET amplifier (CS) - frequency <mark>re</mark> sponse chara	acteristics		
10. Cascad	e amplifier – gain and frequency response			
11. Cascod	e amplifier -frequency response			
	ck amplifiers (current series, voltage series)	•	ency response	
	equency oscillators –RC phaseshift, Wien bri	idge,		
Ũ	equency oscillators –Colpitt's and Hartley			
	amplifiers (transformer less) - Class B and C			
	tor series voltage regulator (load and line reg	gulation)		
	amplifier - frequency response			
	ap sweep circuit			
	ibrators -Astable, Monostable and Bistable			
20. Schmit	t trigger			
Expected outcome:	2014	1		
The student should ab	le to:	1		
-	monstrate functioning of various discrete ana	-	tools	
2. Function effec	tively as an individual and in a team to accor	nplish the given	task.	

COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCT ION
EC233	ELECTRONICS DESIGN AUTOMATION LAB	0-0-3-1	2016
Prerequisite	Nil	÷	
Course Obje	ctives :		
	objective of this course is to familiarize the		
	gital circuits, signals and systems using the soft-wa		
	gn methodologies for the rapid design and veri	fication of c	omplex electronic
systems.	TECHNOLOG		AT
	ises / Experiments	IIV/	
1 Introduc	tion to SPICE	TV	
	UNIVERSI		
	n can use any one circuit simulation package with sc	hematic entry	like EDWinXP,
- ·	lultisim, Proteus or CircuitLab.]		
	on to SPICE software. Recognize various schematic apacitor, inductor, energy sources (VCVS, CCVS,	•	-
	er, DIODE, BJT, FET, MOSFET, etc., units & value		
	and analyse (DC, AC, Transient) simple analog and di		
	periments using SPICE [Six experiments manda		le encurts.
	n of following circuits using SPICE [Schematic e	• -	its using standard
	Analysis – Transient, AC, DC]		
	tential divider network		
2. R	C integrating and differentiating circuits		
3. Di	ode, BJT and MOSFET characteristics		
	ode Circuits (Clipping, Clamping, Rectifiers)		
	C coupled amplifier (Single & two stages)		
	C oscillator (RC phase shift / Wien Bridge)		
	stable multivibrator		
	uth table verification of basic and universal gates		
9. Ha	lf adder /full adder circuits using gates		
	bit adder/BCD adder		
	coder/Multiplexers		
	tion to MATLAB		
	ION IO WIATLAD		
[Institutio	n can use any one numerical computational package	e like SciLab.	Octave, Spyder.
	cipy) or Freemat instead of MATLAB]		o out o, spj 201,
5 (1.77		
Fundame	ntals, basic operations on array, matrix, complex nu	umbers etc., S	cript and function
	ing commands, control statements.		
Writing s	mple programs for handling arrays and plotting of a	nathematical	functions, plotting
	, discrete and noise signals, analysing the simple e	lectronic circ	uits/network using
	mesh equations.		
	xperiments [Four experiments mandatory]		
-	gram and obtain the solutions		
	/plot the mathematical equations containing co	mplex numb	ers, array, matrix
multip	lication and quadratic equations etc		

	2. Obtain different types of plots (2D/3D, surface plot, polar plot)
	3. Generate and plot various signals like sine square, pulse in same window.
	4. Plot the diode/transistor characteristics.
	5. Solve node, mesh and loop equations of simple electrical/network circuits.
	6. Find the poles and zeros hence plot the transfer functions/polynomials
	7. Sort numbers in ascending order and save to another text file using text read and sort
	function after reading n floating point numbers from a formatted text file stored in the
	system.
	8. Plot a full wave rectified waveform using Fourier series
3	Introduction to HDL
	TECHNIQUORAL
	[Institution can choose VHDL or Verilog as language to describe the problem and any one
	simulation/synthesis tool like Xilinix ISE, Modelsim, QSim, verilog, VHDL, EDwinXP or
	ORCAD etc. for the simulation.]
	UTVIVENUTTI
	List of Experiments using HDL
	Write the HDL code to realise and simulate the following circuits: (at least 4 of the following)
	1. Basic gates/universal gates
	2. Combinational Circuits (Half adder/Half subtractor)
	3. Full adder in 3 modelling styles (Dataflow/structural/Behavioural)
	4. Multiplexer/De-multiplexer
	5. Decoder/Encoder
	6. 4 bit adder/BCD adder
	7. Flipflops (SR,JK,T,D)
	8. Binary Counters
-	9. Finite state machines
Ex	pected outcomes:
	1. An ability to apply knowledge of computer, science, and engineering to the analysis of
	electrical and electronic engineering problems.
	2. An ability to design systems which include hardware and software components.

2014

- An ability to identify, formulate and solve engineering problems.
 An ability to use modern engineering techniques