SCHEME AND SYLLABI FOR

SIXTH SEMESTER

OF

BACHELOR OF TECHNOLOGY IN

PRODUCTION ENGINEERING

FROM 2009 ADMISSION ONWARDS

CALICUT UNIVERSITY (P.O), THENHIPALAM

<u>6th Semester</u>

			Hours/week		Marks		Sem- end	
Code	Subject	L	Т	P/D	Inte- rnal	Sem- end	duration- hours	Credits
PE09 601	Tool Engineering	4	1	-	30	70	3	5
PE09 602	Metal Forming	3	1	-	30	70	3	4
PE09 603	Industrial Engineering	3	1	-	30	70	3	4
PE09 604	Instrumentation and Control	3	1	-	30	70	3	4
PE09 605	Inspection and Quality Control	2	1	-	30	70	3	3
PE09 Lxx	Elective I	3	1	-	30	70	3	4
PE09 607(P)	Manufacturing Sciences Lab	-	-	3	50	50	3	2
PE09 608(P)	CAD/CAM Lab	-	-	3	50	50	3	2
	Total	18	6	6				28

<u>Elective I</u>

PE09 L01 Human Resource managementPE09 L02 Marketing ManagementPE09 L03 Machine Tool DesignPE09 L04 MechatronicsPE09 L05 Advanced Materials and Processing

PE09 601: Tool Engineering

Credits: 5

Teaching scheme

4 hours lecture and 1 hour tutorial per week

Objectives

- To give an exposure on different cutting tools, clamping and fixing methods, jigs used for different operations like turning, milling, drilling etc
- To give exposure to piercing and blanking operations

Module I (18 hours)

Design of Cutting Tools :- Brief history of metal cutting process - design of single point cutting tools for turning, boring, shaping, planning and slotting - design of multi point cutting tools :- milling cutters, drills, reamers, taps and dies – classification of multipoint cutting tools – simple problems

Module II (18 hours)

Principles of location and clamping – locating and clamping methods and devices – design of drill jig – types of drill jigs – general considerations in the design of drill jig – drill bushings – methods of construction – jigs in modern manufacturing – problems on design of simple jigs

Module III (18 hours)

Design of Fixtures :- Fixtures and fixture economics – types of fixtures – Vice fixtures – Milling fixtures – Boring fixtures – Broaching fixtures – Lathe fixtures – grinding fixtures – problems on design of simple fixtures.

Module IV (18 hours)

Design of sheet metal blanking and piercing dies: - Introduction to die cutting operations – Presses – Cutting action in punch & die operations – die clearance – blanking & piercing die construction – pilots – strippers & pressure pads – simple problems

Text Book

1. Cyril Donaldson, George.H.Lecain, V.C.Goold, *Tool Design*, TMH publishing Co., 3rd edition

Reference Books

- 1. ASTME, Fundametals of tool design
- 2. HMT, Produciton Technology, Tata Mc Graw Hill Publishers
- 3. G R Nagpal, Tool Engineering & Design, Khanna Publishers

Internal Continuous Assessment (Maximum Marks-30)

- 60% Tests (minimum 2)
- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% Regularity in the class

University	y Examination Pattern	
PART A:	Short answer questions (one/two sentences)	5 x 2 marks=10 marks
	All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.	
PART B:	Analytical/Problem solving questions	4 x 5 marks=20 marks
	Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.	
PART C:	Descriptive/Analytical/Problem solving questions	4 x 10 marks=40 marks
	Two questions from each module with choice to answer one question.	
		Maximum Total Marks: 70

PE09 602: Metal Forming

Teaching scheme

Credits: 4

3 hours lecture and 1 hour tutorial per week

Objectives

- To provide an exposure to the basic concepts of plasticity which is essential for in the analysis of metal forming processes
- To get familiar with the metal forming techniques, tools and processes

Module I (14 hours)

Theory of stress – Stress tensor – Spherical and Deviator stress tensors – Transformation equations – Principal stresses – Invariants – Octahedral stress – Maximum shearing stress – Theory of strain – Strain tensor – Spherical and Deviator strain tensors – Transformation equations – Principal Strains – Invariants – Octahedral strain – Compatibility equations

Module II (14 hours)

Theory of Plasticity – Von-Mises and Tresca yield criteria – Failure theories – Plastic stress-strain relations – Saint Venent's theory of plastic flow – Reuss theory of elasto-plastic deformation – Hencky's theory of small plastic deformations – Two dimensional Plastic flow – Equilibrium equations referred to arbitrary Cartesian co-ordinates – Equilibrium equations referred to slip lines

Module III (13 hours)

Forging :- Type of forging operations – design of forging dies – defects in forging – NDT – Extrusion – Equipment for extrusion – Processes of extrusion – Properties of extruded metal – Defects in extruded products – Hot and cold drawing - properties –formability, formability limit diagram, defects – Deep drawing, defects in deep drawing,- stretch forming.

Module IV (13 hours)

Rolling: - Rolling process – Rolling mills – properties of rolled components – stresses in rolling – rolling load calculation - Sheet metal work – Sheet metal and press working – Sheet metal joints – Types of presses and dies – Shearing and spinning of metals Introduction to powder metallurgy

Syllabus - B.Tech. Production Engg.

Text Books_

1. L S Srinath, *Advanced Mechanics of solids*, Prentice Hall of India **Reference books**

- 1. Timonshinko & Goodyear, *Theory of Elasticity*, Tata Mc Graw Hill
- 2. Dr.Sadhu Singh, Theory of Plasticity, Khanna
- 3. L.S.Srinath, *Theory of Plasticity*
- 4. Hoffman & Sachs, Introduction to theory of Plasticity for Engineers, Mc Graw Hill
- 5. Dieter, Principles of Mechanical Working of Metals
- 6. Johnson, Forging Products
- 7. Pearson, *Extrusion of Metal*
- 8. G.W. Row, Fundamentals of Metal Forming
- 9. Dr. R Narayanaswamy, Metal forming technology
- 10. Dr. Sadhu singh, *Applied Stress analysis*, Khanna Publishers

Internal Continuous Assessment (Maximum Marks-30)

- 60% Tests (minimum 2)
- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc
- 10% $\,$ Regularity in the class

University Examination Pattern

PART A:	Short answer questions (one/two sentences) All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.	5 x 2 marks=10 marks
PART B:	Analytical/Problem solving questions Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.	4 x 5 marks=20 marks
PART C:	<i>Descriptive/Analytical/Problem solving questions</i> Two questions from each module with choice to answer one question.	4 x 10 marks=40 marks
		Maximum Total Marks: 70

PE09 603: Industrial Engineering

Teaching scheme

Credits: 4

3 hours lecture and 1 hour tutorial per week

Objectives

- To provide a basic knowledge on various industrial engineering principle and tools and need for analyzing engineering activities.
- To familiarise the students with the design, improvement and installation of integrated systems of men, materials and equipments

Module I (14 hours)

Introduction to Industrial Engineering – Definition – Functions- Historical Development of Industrial engineering – Applications of Industrial Engineering - Productivity – Input output model - factors affecting Productivity – Productivity Ratios - Improving productivity – Indian Industry – Productivity of Indian industry

Module II (14 hours)

Product design and development – Good Product Design – Product planning – Product development – Product life Cycle - Products and services – Product Standardization, Simplification, Specialization and Interchangeability – Value Analysis - Value Engineering

Module III (13 hours)

Work Study – Scope and Objectives – Method Study Procedure – Process Charts – Flow diagram-Principles of motion economy – Micro motion study – Cycle graph- Chronocyclegraph – SIMO Chart – Work Measurement – Time study – Performance rating – standard time – allowances – Work sampling – PMTS – Standard data

Module IV (13 hours)

Industrial safety – Safety management – Industrial accidents and accident prevention- Safety Organization, Councils and safety meetings, safety audits – Safe workplace layout- personal protective equipments - Safety motivation – Hazard analysis – Industrial pollution and pollution control – Environmental impact assessment- Environmental Management Systems

Reference books

Donald R Herzog, *Industrial Engineering Methods and Controls*, Prentice Hall H.B. Maynard, *Industrial Engineering Handbook*, McGraw-Hill Publishers W Grant Ireson, Eugene L Grant, *Handbook of Industrial Engineering management*-Prentice Hall

Marvin Mundel, Motion and Time Study, Prentice Hall India

ILO, Introduction to Work Study, Universal Book Corporation

Harold T Amrine, John A Ritchey etal.., *Manufacturing Organization & management*, Pearson Education

Internal Continuous Assessment (Maximum Marks-30)

- 60% Tests (minimum 2)
- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc
- 10% Regularity in the class

University Examination Pattern

PART A:	Short answer questions (one/two sentences) All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.	5 x 2 marks=10 marks
PART B:	<i>Analytical/Problem solving questions</i> Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.	4 x 5 marks=20 marks
PART C:	<i>Descriptive/Analytical/Problem solving questions</i> Two questions from each module with choice to answer one question.	4 x 10 marks=40 marks Maximum Total Marks: 70

PE09 604 Instrumentation and Control

Teaching scheme 3 hours lecture and 1 hour tutorial per week

Credits: 4

Objectives

- To give an exposure to the concepts and techniques of control systems
- To create knowledge about the various instruments and instrumentation techniques

Module I (14 hours)

Control systems – principle of automatic control – open and closed loop systems – practical examples – transfer function approach – transfer functions of control components – simple physical systems – analogous systems – error and closed loop transfer functions – signal flow graphs – control system components – DC and AC servomotors – hydraulic and pneumatic systems – process control – concept of stability of linear systems – Routh's criterion of stability

Module II (13 hours)

State space analysis of systems – introduction to state concept – state space representation- state equations of linear continuous data systems – matrix representation of state equation – solution of time invariant state equations – introduction to sample data and digital control systems

Module III (13 hours)

Static performance characteristics of measuring instruments – accuracy ,precision, sensitivity etc. – errors in measurements – statistical treatment of data – treatment of single sample data and multisampling data.

Functional elements of measuring system – various types and classification of transducers, modifying systems and display systems

Module IV (14 hours)

Measurement of pressure – manometers – diaphragms – bourdon gage – strain gage pressure cell and electrical resistance pressure cell

Measurement of force and torque – elastic transducers – strain gage load cells – mechanical and hydraulic dynamometers

Measurement of flow – obstruction meters – variable area meters – magnetic and ultrasonic flow meters- strain gage flow meters – turbine type flow meters

Measurement of temperature – bimetallic thermometers – thermo couples – pressure thermometers – optical and radiation pyrometers

Measurement of vibration - micrometers - accelerometers - seismic instruments

Text Books

For control systems 1. Nagarath.J& Gopal M. *Control Systems Engineering*, Wiley Eastern Limited 2. K.Ogata, *Modern Control Engineering*, Pearson Edition

Reference Books

1. Kuo, Aoutomatic Control Systems, Prentice Hall Of India

- 2. Eugine Xavier S.P, Joseph Cyril Babu J, Principles of Control Systems, S. Chand & Company
- 3.S.Palani, Control Systems Engineering TMH
- 4.Nakra BC & Choudhary K K, Instrumentation, Measurements And Analysis

5. Beckwith, Mechanical Measurements, Oxford & IBH

Internal Continuous Assessment (Maximum Marks-30)

60% - Tests (minimum 2)

- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% Regularity in the class

University Examination Pattern

PART A:	Short answer questions (one/two sentences) All questions are compulsory. There should be at least on question from each module and not more than two questions from any module.	5 x 2 marks=10 marks e o
PART B:	Analytical/Problem solving questions Candidates have to answer four questions out of six. Ther should be at least one question from each module and no more than two questions from any module.	4 x 5 marks=20 marks e t
PART C:	Descriptive/Analytical/Problem solving questions Two questions from each module with choice to answer one question.	4 x 10 marks=40 marks r Maximum Total Marks: 70

PE09 605: Inspection and Quality Control

Teaching scheme

Credits: 3

2hours lecture and 1 hour tutorial per week

Objectives

- To provide an insight to various methods of measurements and inspection
- To provide an understanding of the statistical methods of quality control

Module I (9 hours)

Introduction to metrology - Limits, Fits and tolerances – reason for systems of limits – definitions and terminology – shaft based and hole based systems – types of fits – Tolerances – specifications – compound tolerancing – tolerance grades – Taylor's principles – limit gages.

Linear and angular measurements – comparators – tool maker's microscope – autocollimator – profile projector.

Module II (11 hours)

Geometric features – basic definition of straightness, flatness, parallelism, roundness, circularity, squareness etc. – principles and equipments for measurement – principles of interferometry Surface roughness – Definitions – General considerations – Tally surf – Profilometer – roughness indicators – symbols in geometric features.

Gears – measurements and inspections of spur gears – tooth thickness, pitch, base pitch etc. – gauging of gears. Screws – Terminology – measurement and inspection of threads – major, minor, effective diameters, pitch. – gauging of screws.

Module III (8 hours)

Introduction to the concept of quality – quality control - Statistical tools in quality – making predictions using the normal, Poisson, and binomial probability distributions – statistical process control – control charts for variables – X and R charts – process capability indices – control charts for attributes – p, np, c and u charts.

Module IV (8 hours)

Acceptance sampling –lot by lot acceptance using single sampling by attributes – OC curve – average out going quality and the AOQL – double sampling – multiple and sequential sampling – ATI and AFI

Text Books:

1. R K Jain, *Industrial Metrology*, Khanna Publishers

2. Gupta I C, A text book of Engineering Metrology, Dhanpat Rai Publications

3. Gerals M Smith, *Statistical Process Control and Quality Improvements*, 5th Edition, Pearson Education, 2004

4. E L Grant, Statistical Quality Control, McGraw Hill

Internal Continuous Assessment (Maximum Marks-30)

60% - Tests (minimum 2)

- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% Regularity in the class

University Examination Pattern				
PART A:	Short answer questions (one/two sentences)	5 x 2 marks=10 marks		
	All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.			
PART B:	Analytical/Problem solving questions	4 x 5 marks=20 marks		
	Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.			
PART C:	<i>Descriptive/Analytical/Problem solving questions</i> Two questions from each module with choice to answer one question.	4 x 10 marks=40 marks		
		Maximum Total Marks: 70		

PE09 L01: Human Resource Management

Teaching scheme

Credits: 4

3 hours lecture and 1 hour tutorial per week

Objectives

• To have an insight into fundamental aspects related to Human Resource Management viz. Jobs, Recruitment, appraisal, remuneration and Employee relations

Module I (14 hours)

Personnel management in organizational context - personnel environment - objectives of personnel management - the role of personnel function - personnel activities - structure of the

personnel department - analyzing and design of jobs - job analysis - job description - job specification - role analysis - the job design – Merit Rating

Module II (14 hours)

Recruitment - selection - placement - induction - internal mobility - separations – labour turnover - performance appraisal - performance appraisal system - assessing potential - design of an effective appraisal system – wages and incentives

Module III (13 hours)

Pay and benefits - pay structures - methods of payments - fringe benefits - occupational health and safety - working conditions occupational health and safety - social background and working conditions - ergonomics - regulatory environment - organization commitment - measures for occupational health and safety

Module IV (13 hours)

Employee relations - management employee relations - managing discipline - managing grievance - managing stress - counselling - industrial relations implications of personnel policies - nature of employment relationships - place of unions in organizations - industrial conflict - managing for good industrial relations

Text Books

Venkata Ratnam C.S. & Srivasthava B.K., *Personnel Management and Human Resources* **Reference Books**

- 1. Monappa A, Saiyaddin & Mirza S., Personnel Management, Tata McGraw Hill Publishers
- **2.** Hersey Paul & Kenneth H Blanchard, *Management of Organizational Behavior*, Prentice Hall
- 3. Mc Greger Douglas, *The Human side of Enterprise*, McGraw Hill
- 4. Subramanyam K.N, Gin V.V., Industrial Relations in India
- 5. Garry Dessler, Human Resource management, Person education
- 6. Biswanatah Ghosh, *Human resource Development and Management*, Vikas Publishing Co.
- 7. Snell, Bohlander, Human Resource Management, Cengage Publishers

Internal Continuous Assessment (Maximum Marks-30)

- 60% Tests (minimum 2)
- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
 10% Der beite in the base

University Examination Pattern

PART A: *Short answer questions (one/two sentences)* 5 x 2 marks=10 marks All questions are compulsory. There should be at least one question from each module and not more than two questions from any module. PART B: Analytical/Problem solving questions 4 x 5 marks=20 marks Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module. 4 x 10 marks=40 marks PART C: Descriptive/Analytical/Problem solving questions Two questions from each module with choice to answer one question. Maximum Total Marks: 70

PE09 L02: Marketing Management

Teaching scheme

3 hours lecture and 1 hour tutorial per week

Objectives

• To give an exposure on various aspects of marketing management viz. Environment, Consumer behaviour, Product management, Promotion decisions, and marketing research

Syllabus - B.Tech. Production Engg.

Module I (14 hours)

Understanding marketing management – Defining marketing – Company orientation – Adopting markets to new economy – E-business building customer satisfaction, value and retention – Customer value – Customer relation ship management.

Module II_(13 hours)

Analyzing market opportunities -Gathering information & measuring market demand - Marketing research system -Forecasting – Analyzing consumer markets and buyer behaviour – Buying decision process – Identifying market segments and selecting target markets – Market segment & targeting.

Module III (14 hours)

Developing market strategies – Positioning & differentiating market through product life cycle – Differentiating tools – Determining new market offerings- Setting the product and branding strategy – Product mix and line – Brand decisions.

Module IV (13 hours)

Managing & defining market program – Managing intergraded marketing communication – Effective communication process – Managers advertising, sales promotion, public relation & direct marketing – Managing the sales force– Personal selling.

Text Books

1. Philip kotler – *Marketing management* – Pearson Education Asia

Reference Books

- 1. Rajan Saxena, Marketing Manageme, Tata McGrawhill Publishing Co,
- 2. Green P.E. & Tall D.S., Research for Marketing Decisions, PHI
- 3. Czinkota, Kotabe, *Marketing management*, Thomson Sour western
- 4. M.Govindarajan, Industrial Marketing Management, Vikas Publishers
- 5. Joel R Evans, Barry Berman, Marketing Management, Cengage Learning

Internal Continuous Assessment (Maximum Marks-30)

60% - Tests (minimum 2)

- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% Regularity in the class

University	y Examination Pattern	
PART A:	Short answer questions (one/two sentences)	5 x 2 marks=10 marks
	All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.	
PART B:	Analytical/Problem solving questions	4 x 5 marks=20 marks
	Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.	
PART C:	<i>Descriptive/Analytical/Problem solving questions</i> Two questions from each module with choice to answer one question.	4 x 10 marks=40 marks
		Maximum Total Marks: 70

PE09 L03: Machine Tool Design

Teaching scheme 3 hours lecture and 1 hour tutorial per week

Objectives

• To give knowledge about various machine components and installation and testing of machine tools

Module I (14 hours)

Machine beds and columns - relative merits of different types of beds and columns as regards to materials - construction - stiffness and rigidity - design considerations of beds and columns -

Syllabus - B.Tech. Production Engg.

concrete and metallic foundation - sources and effects - equipment for the study of vibration - vibration isolation

Module II (14 hours)

Slides ways - different types of slide ways - wear adjustments - design consideration - lubrication surface finish - straightness and hardness requirements of slide way

Module III (13 hours)

Drive systems - selection of range of feeds and speeds - layout in AP, GP and LP - standardisation of speeds and feeds - ray diagram for machine tool gear boxes - various types of drives such as sliding and clutched drives - Rupert drives - feed gear box analysis - Norton and meander drives - stepless drive

Module IV (13 hours)

Erection and testing - equipment needed for erection - erection procedure - commissioning - check list - safety - I.S. specification for testing machine tools - acceptance tests for lathe - milling - drilling - grinding machines - maintenance and reconditioning of machine tool - need for maintenance - maintenance policies - maintenance organisation - principles of reconditioning - repair methods for beds - slides - spindles - gears - lead ,screw and bearings

Text Books

- 1. Mehta N.K., *Machine Tool Design*, Tata McGraw Hill
- 2. Machine Tool Design Hand Book, CMTI

Reference Books

- 1. Machine Tool Design, Achorkhan, (ED)Mir Publications
- 2. Sen & Bhatacharyya, *Principles of Machine Tools*, New Central Book Agency
- 3. Koenigsberger, Pergamon, Design and Construction of Metal Cutting Machine Tools
- 4. Garg M.P., Industrial Maintenance

Internal Continuous Assessment (Maximum Marks-30)

60% - Tests (minimum 2)

- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% Regularity in the class

University Examination Pattern

PART A:	Short answer questions (one/two sentences) All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.	5 x 2 marks=10 marks
PART B:	Analytical/Problem solving questions Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.	4 x 5 marks=20 marks
PART C:	<i>Descriptive/Analytical/Problem solving questions</i> Two questions from each module with choice to answer one question.	4 x 10 marks=40 marks
		Maximum Total Marks: 70

PE09 L04: Mechatronics

Teaching scheme

3 hours lecture and 1 hour tutorial per week

Objectives

• To acquire an understanding of sensors, actuating devices, signal processing etc to have a clear idea about advanced manufacturing systems

Module I (10 hours)

Introduction to Mechatronics: - Mechatronics – Integrated Design issues – Key elements – Design process – Advanced approaches in Mechatronics

Syllabus - B.Tech. Production Engg.

Module II (14 hours)

Sensors and Transducers :- Introduction to sensors and transducers – Sensors for motion and position measurement – Force, Torque and tactile sensors – Flow sensors – Temperature sensing devices – Ultrasonic sensors – Vibration control using magneto strictive transducers – Fibre optic devices in mechatronics

Module III (16 hours)

Actuating devices, Signals, Systems & Controls: - DC and AC Drives-Stepper motor – Servo motor – fluid power-design elements – piezoelectric actuators – Introduction to Signals – systems and controls – system representation – Linearisation of Non-linear systems – time delays – measures of system performance.

Module IV (14 hours)

Advanced Applications in Mechatronics: - Sensors for condition monitoring – Mechtronic control in automated manufacturing – Artificial Intelligence

Text Books

1. Devadas Shetty, Richard.A.Kolk,,*Mechatronics System Design*,PWS publishing company1997 **Reference Books**

- 1. Bosch, Mechatronics Theory and Application., 1998
- 2. W.Bolton, Mechatronics, Longmen, 1999
- 3. *Mechatronic*, Edited by HMT, Bangalore, 1998
- 4. Bradly.D.A, Dawson.D, Burd.N.C,Loadeer.A.J, *Mechatronics, Electronics in Products and Processes,* Chapmall and Hall 1993

Internal Continuous Assessment (Maximum Marks-30)

- 60% Tests (minimum 2)
- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% Regularity in the class

University Examination Pattern					
PART A:	Short answer questions (one/two sentences) All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.	5 x 2 marks=10 marks			
PART B:	Analytical/Problem solving questions Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.	4 x 5 marks=20 marks			
PART C:	<i>Descriptive/Analytical/Problem solving questions</i> Two questions from each module with choice to answer one question.	4 x 10 marks=40 marks			
		Maximum Total Marks: 70			

PE09 L05: Advanced Materials and Processing

Teaching scheme 3 hours lecture and 1 hour tutorial per week

Objectives

- To give exposure to newer materials used in manufacturing
- To give exposure to the advanced techniques used in manufacturing
- To enable the student to select the appropriate process according to the materials used

Module I (14 hours)

Introduction – conventional materials, limitation, need for composites, classification and characteristics of composites, resin matrices, reinforcements, other constituents of fibre, fibre reinforced plastics, ceramics and metal matrix composites – manufacturing of metal matrix composites, solid and liquid state processing – testing of composites – applications

Module II (14 hours)

Introduction to powder metallurgy (P/M) processes – design considerations for P/M tooling – types of compaction – sintering at different atmospheres – liquid phase sintering – secondary processes – P/M applications specifically to cutting tool, bearing and friction materials – nano materials and their applications.

Module III (13 hours)

Special material removal processes – chemical machining, electro chemical machining, electrical discharge machining wire EDM, water jet machining – high speed machining – micro machining-casting of non-ferrous metals

Module IV (13 hours)

Surface structure and properties – surface coatings, hard facing, thermal spraying, vapour deposition, ion implantation, hot dipping – coating of cutting and forming tools

Reference Books

- 1. Serope Kalpakjian and Steven R Schmid *Manufacturing Engineering and Technology*, Addison Wesley Longman (Singapore) Pvt. Ltd., New Delhi, 2000
- 2. L Carl Love Welding Procedures and Applications, Prentice Hall Inc., 1993
- 3. H M T Production Technology, Tata McGraw Hill Publishing Co., 2002
- 4. R W Heine, C R Loper and P C Rosenthal Principles of Metal Casting, Tata McGraw Hill

Internal Continuous Assessment (Maximum Marks-30)

- 60% Tests (minimum 2)
- 30% Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% Regularity in the class

	Universit	y Examination Pattern	
	PART A:	Short answer questions (one/two sentences)	5 x 2 marks=10 marks
		All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.	
	PART B:	Analytical/Problem solving questions	4 x 5 marks=20 marks
		Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.	
	PART C:	Descriptive/Analytical/Problem solving questions	4 x 10 marks=40 marks
Sylla		Two questions from each module with choice to answer one question.	
			Maximum Total Marks: 70

PE09 607(P): Manufacturing Sciences Lab

Teaching scheme 3 hours practical per week Credits: 2

Objectives

• *To train students to conduct experiments in manufacturing sciences* Syllabus - B.Tech. Production Engg.

- To train the students to plan experiments for evaluating practical situations
- 1. Specimen preparation for microscopic inspection
- 2. Study and use of metallurgical microscope, microstructure of ferrous and non ferrous materials
- 3. Heat treatment processes study of various parameters hardness
- 4. Determination of cutting forces in turning lathe tool dynamometer
- 5. Determinations of tool wear tool makers microscope
- 6. Preparation of specimen for sand mould testing tension, compression, hardness, porosity
- 7. Sand sieve analysis
- 8. Spark testing & scratch testing of materials
- 9. Preparation of specimens for welding gas, arc welding processes specifications

10. Measurement of HAZ - structural changes, NDT of welded joints

Internal Continuous Assessment (Maximum Marks-50)

60%-Laboratory practical and record 30%- Test/s 10%- Regularity in the class

Semester End Examination (Maximum Marks-50)

70% - Procedure, conducting experiment, results, tabulation, and inference

- 20% Viva voce
- 10% Fair record

PE09 608 (P): CAD/CAM Lab

Teaching scheme

3 hours practical per week

Credits: 2

Objectives

• *Experiments are aimed at providing the student an atmosphere in which he will be exposed to some of the basic CAD/CAM techniques*

CAD - Laboratory

- 1. Modelling of machine components
- 2. Assembly modelling
- 3. Preparation of detail drawing from solid model
- 4. Finite element modelling and analysis
- 5. Mechanism modelling and analysis

CAM – Laboratory

- 1. Programming of CNC Lathes
- 2. Programming of machining centres
- 3. NC Programming from CAD models
- 4. Design of moulds from CAD models

Internal Continuous Assessment (Maximum Marks-50)

60%-Laboratory practical and record 30%- Test/s 10%- Regularity in the class

Semester EndExamination (Maximum Marks-50)

70% - Procedure, conducting experiment, results, tabulation, and inference

20% - Viva voce

10% - Fair record

PE09 701: Production Management

Teaching scheme

4 hours lecture and 1 hour tutorial per week

Objectives

• To give an exposure to the different aspects of Production Management,viz., Production Planning and Control, materials Management and Quality management