B. Tech. Degree Course of
CALICUT UNIVERSITY

2004
ADMISSION ONWARDS
COMBINED FIRST AND SECOND SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/Week</th>
<th>Sess</th>
<th>Uni./Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
</tr>
<tr>
<td>EN04 101</td>
<td>Engineering Mathematics I</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EN04 102</td>
<td>Engineering Mathematics II</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EN04 103A</td>
<td>Engineering Physics(A)</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EN04 104A</td>
<td>Engineering Chemistry(A)</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EN04 105</td>
<td>Humanities</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EN04 106A</td>
<td>Engineering Graphics(A)</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>EN04 107A</td>
<td>Engineering Mechanics(A)</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 108</td>
<td>Basic Electronics</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EC04 109</td>
<td>Basic Electrical Engineering</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EC04 110(P)</td>
<td>Mechanical Workshop</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>EC04 111(P)</td>
<td>Electrical and Electronics Workshop</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>19</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Details of Common Course

<table>
<thead>
<tr>
<th>SL NO.</th>
<th>SUBJECT CODE</th>
<th>NAME OF SUBJECT</th>
<th>COMMON FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EN04-10I</td>
<td>MATHEMATICS-I</td>
<td>COMMON FOR ALL.</td>
</tr>
<tr>
<td>2</td>
<td>EN04-102</td>
<td>MATHEMATICS-II</td>
<td>COMMON FOR ALL.</td>
</tr>
<tr>
<td>3</td>
<td>EN04-103A</td>
<td>ENGINEERING PHYSICS(A)</td>
<td>AI, S, EE, EC, IT, IC, BM, BT, PT</td>
</tr>
<tr>
<td></td>
<td>EN04-103A(P)</td>
<td>PHYSICS LAB(A)</td>
<td>AI, S, EE, EC, IT, IC, BM, BT</td>
</tr>
<tr>
<td></td>
<td>EN04-103B</td>
<td>ENGINEERING PHYSICS(B)</td>
<td>CH, CE, ME, PE</td>
</tr>
<tr>
<td></td>
<td>EN04-103B(P)</td>
<td>PHYSICS LAB(B)</td>
<td>CH, CE, ME, PE</td>
</tr>
<tr>
<td>4</td>
<td>EN04-104A</td>
<td>ENGINEERING CHEMISTRY(A)</td>
<td>AI, CS, EE, EC, IT, IC, BM, BT, PT</td>
</tr>
<tr>
<td></td>
<td>EN04-104A(P)</td>
<td>CHEMISTRY LAB(A)</td>
<td>AI, CS, EE, EC, IT, IC, BM, BT</td>
</tr>
<tr>
<td></td>
<td>EN04-104B</td>
<td>ENGINEERING CHEMISTRY(B)</td>
<td>CH, CE, ME, PE</td>
</tr>
<tr>
<td></td>
<td>EN04-104B(P)</td>
<td>CHEMISTRY LAB(B)</td>
<td>CH, CE, ME, PE</td>
</tr>
<tr>
<td></td>
<td>EN04-104C</td>
<td>ENGINEERING CHEMISTRY(C)</td>
<td>CH</td>
</tr>
<tr>
<td></td>
<td>EN04-104C(P)</td>
<td>CHEMISTRY LAB(C)</td>
<td>CH</td>
</tr>
<tr>
<td>5</td>
<td>EN04-105</td>
<td>HUMANITIES</td>
<td>COMMON FOR ALL.</td>
</tr>
<tr>
<td>6</td>
<td>EN04-106A</td>
<td>ENGINEERING GRAPHICS(A)</td>
<td>AI, CS, EE, IT, IC, PT, BM, BT</td>
</tr>
<tr>
<td></td>
<td>EN04-106B</td>
<td>ENGINEERING GRAPHICS(B)</td>
<td>T, CE, CH, ME, PE</td>
</tr>
<tr>
<td>7</td>
<td>EN04-107A</td>
<td>ENGINEERING MECHANICS(A)</td>
<td>AI, CH, CS, EE, EC, IT, IC, BM, BT</td>
</tr>
<tr>
<td></td>
<td>EN04-107B</td>
<td>ENGINEERING MECHANICS(B)</td>
<td>PT, CE, ME, PE</td>
</tr>
<tr>
<td>8</td>
<td>EC04-108</td>
<td>BASIC ELECTRONICS</td>
<td>EC, BM, BT, AI, IC, CS, IT, PT</td>
</tr>
<tr>
<td>CS04-108</td>
<td>COMPUTER PROGRAMMING IN C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>EE04-109</td>
<td>BASIC ELECTRICAL ENGINEERING</td>
<td>AI, EE, EC, IC, BM, BT, CS, IT, PT</td>
</tr>
<tr>
<td>CS04-109</td>
<td>BASIC ELECTRICAL ENGINEERING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>EE04-110(P)</td>
<td>CIVIL AND MECHANICAL WORKSHOP</td>
<td>EE, CS, IT, PT</td>
</tr>
<tr>
<td>EC04-110(P)</td>
<td>MECHANICAL WORKSHOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>EEO4-111(P)</td>
<td>ELECTRICAL AND ELECTRONICS WORKSHOP</td>
<td>EE, EC, AI, BT, BM, CS, IT, IC, PT</td>
</tr>
</tbody>
</table>
THIRD SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/Week</th>
<th>Session Marks</th>
<th>University Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
</tr>
<tr>
<td>EN04 301A</td>
<td>ENGINEERING MATHEMATICS - III</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 302</td>
<td>COMPUTER PROGRAMMING IN C</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>EC04 303</td>
<td>ELECTRIC CIRCUITS & NETWORK THEORY</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 304</td>
<td>ELECTRICAL ENGINEERING</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 305</td>
<td>ELECTRONIC CIRCUITS I</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 306</td>
<td>SOLID STATE DEVICES</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 307(P)</td>
<td>BASIC ELECTRONICS LAB</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EC04 308(P)</td>
<td>ELECTRICAL ENGINEERING LAB</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/Week</th>
<th>Session Marks</th>
<th>University Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
</tr>
<tr>
<td>EN04 401A</td>
<td>ENGINEERING MATHEMATICS - IV</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EN04 402</td>
<td>ENVIRONMENTAL STUDIES</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 403</td>
<td>DIGITAL ELECTRONICS</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 404</td>
<td>COMPUTER ORGANISATION AND ARCHITECTURE</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 405</td>
<td>ELECTRONIC CIRCUITS II</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 406</td>
<td>ANALOG COMMUNICATIONS</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 407(P)</td>
<td>ELECTRONICS CIRCUITS LAB</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EC04 408(P)</td>
<td>DIGITAL ELECTRONICS LAB</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

FIFTH SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/Week</th>
<th>Session Marks</th>
<th>University Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
</tr>
<tr>
<td>EC04 501</td>
<td>Signals and Systems</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 502</td>
<td>Mechanical Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 503</td>
<td>Linear Integrated Circuits</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 504</td>
<td>Electromagnetic Field Theory</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 505</td>
<td>Electronic Instrumentation</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 506</td>
<td>Micro Processors &</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 507(P)</td>
<td>Linear Integrated Circuits Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EC04 508(P)</td>
<td>Analog Communication Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/Week</th>
<th>Session Marks</th>
<th>University Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
</tr>
<tr>
<td>EC04 601</td>
<td>Engineering Economics and Principles of Management</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 602</td>
<td>Digital Signal Processing</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 603</td>
<td>Control Systems</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 604</td>
<td>Digital Communication</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 605</td>
<td>Power Electronics</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 606</td>
<td>Radiation and Propagation</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 607(P)</td>
<td>Microprocessor Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EC04 608(P)</td>
<td>Mini Project</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

SEVENTH SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/Week</th>
<th>Session Marks</th>
<th>University Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
</tr>
<tr>
<td>EC04 701</td>
<td>Information Theory and Coding</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 702</td>
<td>Microwave Devices and Communication</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 703</td>
<td>Optical Communication Systems</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 704</td>
<td>Computer Communication Networking</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 705</td>
<td>Elective I</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>EC04 706(P)</td>
<td>Digital Communication Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EC04 707(P)</td>
<td>Seminar</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EC04 708(P)</td>
<td>Project Work</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

ELECTIVE – 1

A Software Engineering
B Image Processing
C Management Information Systems
D Satellite communication Systems
E Digital MOS Circuits
F Numerical Analysis.
EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/Week</th>
<th>Session Marks</th>
<th>University Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC04 801</td>
<td>Microelectronic Technology</td>
<td>3 1 -</td>
<td>50</td>
<td>3 100</td>
</tr>
<tr>
<td>EC04 801</td>
<td>Wireless Mobile Communication Systems</td>
<td>3 1 -</td>
<td>50</td>
<td>3 100</td>
</tr>
<tr>
<td>EC04 803</td>
<td>Communication Switching Systems</td>
<td>3 1 -</td>
<td>50</td>
<td>3 100</td>
</tr>
<tr>
<td>EC04 804</td>
<td>Elective-II</td>
<td>3 1 -</td>
<td>50</td>
<td>3 100</td>
</tr>
<tr>
<td>EC04 805</td>
<td>Elective-III</td>
<td>3 1 -</td>
<td>50</td>
<td>3 100</td>
</tr>
<tr>
<td>EC04 806(P)</td>
<td>Advanced communication Lab</td>
<td>- - 3</td>
<td>50</td>
<td>3 100</td>
</tr>
<tr>
<td>EC04 807(P)</td>
<td>Project Work</td>
<td>- - 7</td>
<td>50</td>
<td>3 100</td>
</tr>
<tr>
<td>EC04 808(P)</td>
<td>Viva Voce</td>
<td>- - - -</td>
<td>-</td>
<td>- 100</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>15 6 6</td>
<td>400</td>
<td>- 700</td>
</tr>
</tbody>
</table>

AGGREGATE FOR EIGHT SEMESTERS: 8300 3000 5300

ELECTIVE – II

A DSP Controllers
B Industrial Psychology
C Analog MOS Circuits
D Digital System Design
E Biomedical Instrumentation
F Multimedia Communication Systems

ELECTIVE – II

A Softy Computing Techniques
B Speech Processing
C Entrepreneurship
D Television Engineering and RADAR Systems
E Nano Technology
F Internet Technology.
Module I: Differential Calculus (15 hours)

Module II: Infinite Series (15 hours)
Notion of convergence and divergence of infinite series - ratio test - comparison test - Raabe's test - root test - series of positive and negative terms - absolute convergence - test for alternating series - power series - interval of convergence - Taylor's and Maclaurin's series expansion of functions - Leibnitz formula for the n^{th} derivative of the product of two functions - use of Leibnitz formula in the Taylor and Maclaurin expansions.

Module III: Matrices (21 hours)

Module IV: Fourier series and harmonic analysis (15 hours)
Periodic functions - trigonometric series - Fourier series - Euler formulae - even and odd functions - functions having arbitrary period - half range expansions - approximation by trigonometric polynomials - minimum square error - numerical method for determining Fourier coefficients - harmonic analysis.

Reference books

Internal work assessment
60% - Test papers (minimum 2)
30% - Assignments/Term project/any other mode decided by the teacher.
10% - Other measures like Regularity and Participation in Class.
Total marks = 50

University examination pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Module I: Ordinary differential equations (21 hours)
Equations of first order - separable, homogeneous and linear types - exact equations - orthogonal trajectories - linear second order equations - homogeneous linear equation of the second order with constant coefficients - fundamental system of solutions - Solutions of the general linear equations of second order with constant coefficients - method of variation of parameters - Cauchy's equation - simple applications of differential equations in engineering problems, including problems in mechanical vibrations, electric circuits and bending of beams.

Module II: Laplace transforms (15 hours)

Module III: Vector differential calculus (15 hours)
Vector function of single variable - differentiation of vector functions - scalar and vector fields - gradient of a scalar field - divergence and curl of vector fields - their physical meanings - relations between the vector differential operators.

Module IV: Vector integral calculus (15 hours)
Double and triple integrals and their evaluation - line, surface and volume integrals - Green's theorem - Gauss' divergence theorem - Stokes' theorem (proofs of these theorems not expected) - line integrals independent of the path.

Reference books
4. Piskunov N., Differential and Integral calculus, MIR Publishers
5. Ayres F., Matrices, Schaum's Outline Series, McGraw Hill

Internal work assessment
60% - Test papers (minimum 2)
30% - Assignments/Term project/any other mode decided by the teacher.
10% - Other measures like Regularity and Participation in Class.
Total marks = 50.

University examination pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EN04-103A: ENGINEERING PHYSICS(A)
(common for AI, CS, EE, EC, IT, IC, BM, BT, PT)

2 hours lecture per week

Module I (11 hours)

Module II (11 hours)

Module III (11 hours).
Polarisation of light- Double refraction- Huygen's explanation of double refraction in uniaxial crystals-Positive and negative crystals- Nicol prism, construction and working -Quarter and half wave plates- Theory of circularly and elliptically polarised light, their production and detection- Rotatory polarisation- Laurent's half shade (brief explanation)- Laurent's half shade polarimeter-Applications of polarised light. Laser physics- Basic concepts and properties of laser- Spontaneous and stimulated emission- Expression for ratio of their coefficients-Absorption, population inversion and optical pumping-Construction and components of a laser-Ruby,Helium and Neon and semiconductor lasers-Application of lasers. Basic principle of holography and its application. Fibre optics- Basic principle -fibre dimensions and construction- Step index single mode and multi mode- fibre- Graded index fibre-Numerical aperature and acceptance angle- Signal distortion in optical fibres and transmission losses(brief ideas only)- optic fibre communication (block diagram) and it's advantages-Applications of optic fibres.
Module IV (11 hours).
Planck's quantum theory- Absorbing power, reflecting power and transmitting power of a body or surface- Perfect black body- Distribution energy in the spectrum of a black body- Wein's displacement law- Planck's hypothesis-Derivation of Planck's law of radiation. Quantum mechanics- Distinction between Newtonian and quantum mechanics- Schroedinger wave equation for free particle -Potential in schrodinger equation -Time dependant and time independent schroedinger equations and their derivations- Expectation values-Applications-Particle in a box (motion in one dimension).Ultrasonics- Piezo - electric effect- Piezo electric crystal- Production of ultrasons by piezo-electric oscillator- Detection of ultrasonics - General properties and applications of ultrasonics - Ultrasonic diffractometer and determination of velocity of ultrasons in a liquid.

Text books
2. Vasudeva A.S; Modern Engineering Physics, S. Chand
3. S.O. Pillai, Solid state physics, New Age International

Reference books
1. Tyagi, M.S. Introduction to semi conductor materials and devices, John Wiley and Sons
2. Mayer, Introduction to classical and modern optics, Arendt
3. John Senior, Fibre optic communication
4. G Aruldas Quantum mechanics Prentice Hall of India
5. Murukesan R. Modern Physics — S.Chand and Co
7. Kale Gokhale; Fundamentals of Solid State Electronics, Kitab Mahal

Internal work assessment
60 % - Test papers (minimum 2)
30 % - Assignments/Term project/any other mode decided by the teacher.
10 % - Other measures like Regularity and Participation in Class.
Total marks = 50.

University examination pattern
QI - 8 short type questions of 5 marks, 2 from each module
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one
1. Band gap energy in a semi conductor using a reverse biased p-n junction.
2. Static characteristics of a transistor (p-n-p or n-p-n) in common emitter configuration
3. Characteristics of a Zener diode
4. Characteristics of a LED and wavelength of emitted radiation
6. Characteristics of a photo resistor (LDR)
7. Voltage regulation using Zener diode
8. Wavelength of mercury spectral lines using diffraction grating and spectrometer.
9. Refractive indices of ordinary and extra ordinary rays in calcite or quartz prisms.
10. Wave length of sodium light by Newton's rings method.
11. Diameter of a thin wire or thickness of a thin paper by air wedge method.
12. Specific rotatory power of cane sugar solution using polarimeter.
13. Frequency of an electrically maintained tuning fork (transverse and longitudinal mode)
14. Wave length and velocity of ultrasonic waves using ultrasonic diffractometer.
15. Divergence of laser beams using He-Ne laser or diode laser.
17. Resolution and dispersive power of a grating.
18. Wave length of a monochromatic light by straight edge using laser beam.
20. Planck's constant using photo-electric cell or solar cell
21. Hall coefficient by measuring Hall voltage in a semi conductor.
22. Measurement of numerical aperture, acceptance angle and attenuation in an optical fibre.
23. Measurement of displacements using optic fibre.
24. Michelson's interferometer - determination of wavelength of a monochromatic source,
 resolution of spectral lines and refractive index of a gas.

(Any 12 experiments should be done)

Reference Books:

1. "Practical Physics with viva voice" - Dr. S.L.Guptha and Dr. V Kumar-
 Publishers - Pragati Prakashan.
2. "Experiments in Engineering Physics" - M.N. Avadhanulu, A.A. Dani, and
 R.M. Pokley - Publishers - S. Chand.

Internal work assessment
Lab practicals and record = 15
Test/s = 10
Total marks = 25
SECTION-1

CHEMISTRY OF ENGINEERING MATERIALS:

Module 1 (13 Hours)
Solids: Classification of solids with examples- (Crystalline - Polycrystalline - Amorphous - Partially melted solids - (KCN) - Super cooled liquids - (Glass) - liquid crystals.)

Crystalline state: Steno's law - Internal structure - Space lattices - Crystallographic axes- Law of rational indices-Crystal systems - Elements of symmetry - X-ray study - Bragg's equation (derivation) single crystal and powder method -(Debye-Scherrer Camera) Cubic systems - structure elucidation - \(d_{100}: d_{110}: d_{111}\) ratio (problems to be worked out) - crystal imperfections(point-line-surface-volume -burgers vector- dislocations - edge and screw) Physical properties, bonding characteristics and Structure relation of- (Covalent solids - Ionic solids - metals) - metallic bonding- Stacking of atoms- (ABCABC,...),(ABAB) - tetrahedral and octahedral voids-Alloys - Hume Rothey rule-Conductivity - Resistivity -(Free electron theory-explanation with Fermi - Diracstatistics)- Fermi level -Applications of conductors-(transmission lines-OFHC Copper, ACSR, Contact materials, Precision resistors- heating elements-Resistance thermometers)- Super Conductors (type I and II-examples)

Semi conductors - Band theory-(MOT) Valence band-Conduction band-intrinsic and extrinsic semiconductors-Fabrication of semiconductor materials-Crystal Growth-ultra pure Silicon production-zone refining-Fabrication of Integrated Circuits (IC)

Dielectric materials-Polarization - Ferro-electricity - Piezoelectricity - Applications with examples- Introduction to Nano Science -Carbon nano tubes and nanowires

Non-crystalline state - glass - properties - (applications- conducting glasses - solid supported liquids (stationary phases in reverse phase chromatography) - Optical fibre.

Reference books

Module 2 (13 Hours)
High Polymers and Lubricants- Classification of Polymers-(Natural and Synthetic, Organic and Inorganic, Thermoplastic and Thermostetting, Plastics, Elastomers, Fibres and liquid resins)
Polymerization (Chain polymerization Polythene- Teflon -polystyrene -poly-methylmethacrylate) Condensation\(^1\) polymerization(Polyamide and Polyeysters) Co-polymerization (Buna-S, Buna-N, PVC- Co-polyvinylacetate, PAN-Co-poly vinyl chloride),Coordination polymerization (Ziegler- Natta Polymerization)-Electrochemical Polymerization-Metathetical Polymerization-Group transfer Polymerization (3 Hours)
Mechanism of polymerization (Cationic, anionic, and free radical).Polymerization techniques (Bulk polymerization, Solution polymerization, Suspension polymerization, Emulsion polymerization, Melt polycondensation, Solution polycondensation, Interfacial condensation, Solid and Gas Phase Polymerization (2 Hours)
Structure relation to properties(Chemical resistance, Strength, Plastic deformation, Extensibility, Crystallinity) -Mol.Wt of Polymers-Number average Molecular wt, Weight average Mol.wt- Gel Permeation Chromatography (1 Hour)
Thermosetting resins (Bakelite, Urea-Formaldehyde, Silicones), Thermoplastic resins (Acrylonitrile, PVC, PVA ,PS, PMMA, PE)-Fibres (Nylon6, Nylon66, Nylon 6,10, Cellulose fibres, dacron, Kevlar) Application of polymers in electronic and electrical industry. Elastomers-Natural rubber-Structure- Vulcanization-Synthetic rubbers (Neoprene, Buna-S, Buna-N, thikol, Silicone rubber) (3 Hours)
Compounding of Plastics (Fillers, Plasticizers, lubricants, pigments, antioxidants, Stabilizers) and Fabrication (Calendering, Die Casting, Film casting, Compression, injection, Extrusion and Blow moulding, Thermoforming, Foaming, Reinforcing) (1 Hour)
Lubricants: Theory of friction - mechanisms of lubrication -Fluid film or hydrodynamic, thin film or boundary lubrication, extreme pressure lubrication- Classification of Lubricants-(Liquid(animaI and vegetable oils, Petroleum oils),Semi-solid (Ca-soap grease, Li-soap grease, Al-soap grease, Axle grease) Solid lubricants (Graphite, Molybdenum di-sulphide-Structure relation to lubrication property) and synthetic lubricants (Di-basic acid esters, Poly glycol ethers, Organo phosphates, Organo silicones)). Properties of Lubricants (Viscosity index, Cloud point and pour point, flash point and fire point, Corrosion stability, Emulsification, Aniline point). Additives and their functions (Fatty acids, Sulphurised fats, Phenols, Calcium sulphonates, Organo-metallics, Hexanol, Amine phosphates, Tricresyl phosphates, Silicon polymers) (3 Hours)

Reference books
Module - 3 (9 Hours)

(5 Hours)

Acid- Bases - (Lowry-Bronsted and Lewis concepts - examples) - concept of pH - pH measurement- (instrumental details required) - Dissociation constants-Potentiometric titrations- (Neutralization, Oxidation-reduction, and Precipitation) Buffer solutions - Henderson's equation for calculation of pH.

(4 Hours)

Reference books

SECTION – 2

CHEMISTRY OF MATERIAL AND ENVIRONMENTAL DAMAGE

Module - 4 (9 Hours) Material damages and prevention:
Corrosion - theoretical aspects -(electrochemical theory) - Galvanic series -Pourbiax diagram - assessment of corrosion potential of materials - Types of corrosion -Dry corrosion-direct chemical -Wet Corrosion-Electrochemical-differential aeration -Corrosion of Iron in acidic neutral, basic condition (Corrosion in boilers) - Galvanic corrosion-(corrosion at contact points in computers-Ag/Au)-Inter granular corrosion (18-8 Steel).Microbial corrosion-Factors influencing corrosion.

(4 Hours)

Environmental damages and prevention:
Polution - Definitions - Classification of pollutants (Global, Regional, Local; Persistent and Non-persistent; Pollutants - Eg: CO2, CO, SOx, NOx, VOC, SPM, CFC, POP, Dissolved metals) - effects on environments -Air pollution – Fossil fuel burning - Automobile exhausts - Photochemical smog - PAN, PBN formation-chemical equations required) - Stratospheric Ozone depletion- CFCs -Nomenclature CFCs -Chapman cycle of Ozone formation- CFC dissociation and its reaction with Ozone -Alternate refrigerants - Monitoring of pollution - gases (CO, SO2,NOx)and paniculate (High volume sampler) -Pollution from thermal

(5 Hours)

Reference books
1. L L Shreir (Ed) "Coirosion Control" Vol 1 and II Newnes-Butterworths, London.

Internal work assessment
60 % - Test papers (minimum 2)
30 % - Assignments/Term project/any other mode decided by the teacher.
10 % - Other measures like Regularity and Participation in Class.
Total marks = 50.

University examination pattern
QI - 8 short type questions of 5 marks, 2 from each module
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one
List of Experiments

1. Estimation of purity of Copper (Iodometric method)
2. Estimation of purity of Aluminium (EDTA method)
3. Crystal growth (melt growth, Solution.
4. Phenol formaldehyde-preparation and study of properties
5. Urea formaldehyde-preparation and study of properties.
6. Flash and fire point-Pensky--Martens apparatus.
8. Corrosion potential measurement of certain metals and alloys in 3.5% salt solution (Steel 18-8), Al, Cu, Brass, Bronze, Monel metal or any alloys of industrial use) - Potentiodynamic and Potentiostatic methods.
9. pHmeter-Calibration and measurement of pH-Preparation of pH by Henderson’s equation and verification
10. Potentiometric titration of acid and base- plots of E/V, AFVAV; A2E/AV2plots.
11. Electrodeposition-plating of Copper-detection of the thickness of the layer deposited.
 Anodizing of Aluminium—Characteristics of the coating.
12. Estimation of SO2, NO2, H2, S2, Calculation of concentration in ppm and microgram per M^3 and comparison of data with permitted levels.
13. Estimation of Pb, Cd in water-colourimetric method
15. Estimation of Dissolved oxygen (Winklers method)
16. Identification tests for certain common plastics (PE, PVC, Nylon, PET, etc.).
17. Preparation of some liquid crystals and study of their properties.

(Atleast 12 experiments should be done)

Internal work assessment
Lab practicals and record $= 10 + 5$
(Lab performance to be evaluated by the thoroughness of the procedure and practices, results of each experiment and punctuality in the submission of Rough and Fair Records)
Test/s $= 10$
Total Marks $= 25$.

Module I (10 hours) Introduction to English usage and grammar-

Reading comprehension -
Exposure to a variety of reading materials, articles, essays, graphic representation, journalistic articles, etc..

Writing comprehension -
Skills to express ideas in sentences, paragraphs and essays.

Module II (10 hours) Technical communication and report writing
Need, importance and characteristics of technical communication -correspondence on technical matters-aspects of technical description of machinery, equipment and processes - giving instructions in an industrial situation - note taking and note making - correspondence on technical topics -different types of technical reports

Module III (14 hours) History of science and technology
Science and technology in the primitive society - the development of human civilization from primitive to modern society- impact of sciences and technology on societies - Cultural and industrial revolutions - the rise and development of early Indian science - contribution of Indian scientist-JC Bose CV Raman Visveswaraya-Ramanujam and Bhabha- Gandhian concepts- recent advances in Indian science.

Module IV (10 hours) Humanities in a technological age
Importance of humanities to technology, education and society - relation of career interests of engineers to humanities - relevance of a scientific temper -science, society and culture.

Reference Books:

2. Pennyor, Grammar Practice Activities, Cambridge University Press
6. Larson E; History of Inventions, Thompson Press India Ltd..
10. Subrayappa; History of Science in India, National Academy or Science, India.
15. Anna University, English for Engineers and Technologists, Orient Longman.

Internal work assessment

<table>
<thead>
<tr>
<th>Activity</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>One essay on relevant topic</td>
<td>10</td>
</tr>
<tr>
<td>One Technical Report</td>
<td>10</td>
</tr>
<tr>
<td>2 Tests</td>
<td>2x15 = 30</td>
</tr>
<tr>
<td>Total marks</td>
<td>= 50</td>
</tr>
</tbody>
</table>

University examination pattern

QI - 8 short type questions of 5 marks, 2 from each module
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one
EN04 - 106A: ENGINEERING GRAPHICS(A)
(Common for AI, CS, EE, EC, IT, IC, PT, BM, PT)
1 hour lecture and 3 hours drawing

Module-0 (8 Hours - 1 Drawing exercise)

Module - I (12 Hours - 3 drawing exercises)

a) Introduction to orthographic projections - vertical, horizontal and profile planes - principles of first angle and third angle projections. Orthographic projections of straight lines parallel to one plane and inclined to the other plane - straight lines inclined to both the planes and occupied in one quadrant - traces of lines.

b) True length and inclination of a line with reference planes. Line occupied in more than one quadrant. Line inclined to the two reference planes but parallel to the profile plane. Line dimensioned in surveyor's unit.

Module - II (16 Hours - 3 drawing exercises)

a) Projections of plane laminae of geometrical shapes parallel to one plane and inclined to the other plane - plane laminae inclined to both the planes. Auxiliary projections of plane laminae. Projections of laminae inclined to the two reference planes but perpendicular to the profile plane.

b) Projections of polyhedra and solids of revolution - frustums - projections of solids with axis parallel to one plane and inclined to the other plane. Projections of solids with the axis inclined to both the planes. (Solids to be drawn: Cube, prisms, pyramids, tetrahedron, cone, and cylinder.) Projections of solids on auxiliary planes. Projections of combinations of solids. (Solids to be drawn: Prisms, pyramids, tetrahedron, cube, cone, and sphere).

Module - III (12 Hours - 3 drawing exercises)

a) Sections of solids - sections by planes parallel to the horizontal or vertical planes and by planes inclined to the horizontal or vertical planes. True shape of section by projecting on auxiliary plane. (Solids to be drawn: Cube, prisms, pyramids, tetrahedron, cone, and cylinder.)

Module - IV (12 Hours - 3 drawing exercises)

a) Introduction to isometric projection - isometric scale - isometric views - isometric projections of prisms, pyramids, cylinder, cone, spheres, sectioned solids and combinations of them. Principle of oblique projection - cavalier, cabinet and general oblique projections of solids and simple objects.

b) Introduction to perspective projections - Classification of perspective views - parallel, angular and oblique perspectives - visual ray method and vanishing point method of drawing perspective projection - perspective views of prisms, pyramids and circles.
Module-V (12 Hours - 6 drawing exercises)
a) Introduction to multiview projection of objects - the principle of the six orthographic views -
conversion of pictorial views of simple engineering objects into orthographic views.

b) Conventional representation of threaded fasteners. Drawing of nuts, bolts, washers and
screws. Locking arrangements of nuts. Bolted and Screwed joints. Foundation bolts of eye end
type, hook end type and split end type.

NOTE: All drawing exercises mentioned above are for class work. Additional exercises where
ever necessary may be given as home assignments.

Text books
2. P.I. Varghese, Engineering Graphics, VIP Publications'

Reference books

Internal work assessment
Drawing exercises (Best 10) 10x3 = 30
2 Tests 2x10 = 20
Total marks = 50

University examination pattern
No questions from module 0
Q1 - 2 questions A and B of 20 marks from module I with choice to answer any one
QII- 2 questions A and B of 20 marks from module II with choice to answer any one
QIII- 2 questions A and B of 20 marks from module III with choice to answer any one
QIV- 2 questions A and B of 20 marks from module IV with choice to answer any one
QV - 2 questions A and B of 20 marks from module I with choice to answer any one
EN04 - 107A: ENGINEERING MECHANICS (A)
(Common for AI, CH, CS, EE, EC, IT, IC, BM, BT, PT)
2 hours lecture and 1 hour tutorial per week

Objectives

1. To acquaint the student with general methods of analyzing engineering problems
2. To illustrate the application of the methods to solve practical engineering problems

Module I (17 hours)
Principles of statics - Free body diagrams - Coplanar forces and Force systems - Resultant and equilibrium conditions for concurrent, parallel and general system of forces - Solution of problems by scalar approach. Introduction to vector approach (Application to simple problems only) - Concurrent forces in space - Resultant - Equilibrium of a particle in space - Non-concurrent forces in space - Resultant of force systems.

Module II (17 hours)
Friction - Laws of friction - Simple contact friction problems - Wedge - Screw jack and its efficiency.
Properties of surfaces - First moment and centroid of curve and area - Centroid of composite plane figures - Theorems of Pappus-guldinus - Second moments of plane figures and composite sections - Transfer theorems - Polar moment of area - Product of area and Principal axes (conceptual level treatment only).
Moment of inertia of a rigid body - M.I of a lamina - M.I of 3 dimensional bodies (cylinder, circular rod, sphere).

Module III (17 hours)
Introduction to structural mechanics - Different types of supports, loads and beams - Reactions at supports. Shear force and Bending moment in beams - Shear force and bending moment diagrams for cantilever and simply supported beams (only for concentrated and uniformly distributed load cases).

Module IV (15 hours)
Kinetics of rectilinear motion - Newton's second law - D'Alembert's principle - Motion on horizontal and inclined surfaces - Analysis of lift motion - Motion of connected bodies. Curvilinear motion - Equation of motion - Tangential and normal acceleration - Centripetal and centrifugal forces - Motion of vehicles on circular path.
Kinematics of rotation - Rigid body rotation about a fixed axis - Rotation under the action of constant moment.
Introduction to mechanical vibrations - Simple harmonic motion - free vibration - Oscillation of spring - Torsional vibration.

Text Books
Reference Books

Internal work assessment
60% - Test papers (minimum)
30% - assignment should be computer based using spread sheet or suitable tools
Total marks = 50

University examination pattern
QI - 8 short type questions of 5 marks, 2 from each module (in which at least 5 questions to be Numerical)
QII - 2 questions A and B of 15 marks from module I with choice to answer anyone
QIII - 2 questions A and B of 15 marks from module III with choice to answer any one
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one
(QII to V can have subdivisions and at least 80% weightage for numerical problems)
Module - 1 (Hours 10)
Electron ballistics - Motion of electron in Electric field - Two dimensional motion of electrons in uniform electric field- motion of electron in transverse magnetic filed- Electron motion in parallel electric and magnetic fields- Electron motion in perpendicular electric and magnetic field. Electrostatic and magnetic deflection sensitivities. CRO- Principle, CRT, block diagram of CRO. Magnetic focusing-electrostatic focusing, applications of CRO. Multimeter-principle of measurement of voltage, current and resistance. Vacuum diode, triode and pentode- principles of operation only.

Module 2 (Hours 12)
Electronic components (Brief discussion only-construction aspects not required). Resistors-fixed and variable, different types, characteristics, colour coding and tolerance. Capacitors-fixed and variable, different types, characteristics. Inductors, Relays and trans formers-different types. The ideal diode- terminal characteristics of practical diodes- analysis of diode circuits-DC model of the diode- Zener diodes- clipping and clamping circuits Transistors- Physical structure and modes of operation- graphical representation of transistor characteristics- DC equivalent model and analysis- The three configuration- comparison and basic applications- Junction filed effect transistors- structural features, operation and VI characteristics.

Module 3 (Hours 10)
Graphical analysis of BJT operations- Biasing- load line, Q-point-effect of Q-point location on allowable signal swing- different resistor biasing circuits-various biasing technique- using two DC sources- potential divider biasing, collector feed back biasing- Bias stability- definition of stability factors-calculation of stability factor for potential divider biasing circuit.

Module 4 (Hours 12)
Rectifiers and power supplies - Half wave and full wave rectifiers. Definition and derivation of rectifier specifications such as PIV, DC output voltage, ripple factor, efficiency, rectification factor- rectifiers with filter: Inductive filter-analysis capacity filter- LC and pi filters. Simple Zener regulator - working - analysis and design - Series voltage regulator - analysis and design.

Text Books
2. Add S. Sedra and Kenneth C Smith, Microelectronic

Reference books
1. Boylestad, R and Nashelsky, L Electronic Devices and Circuit Theory, PHI/Pearson
2. Boggart T.F. Electronic Devices and Circuits, UBS.
3. Horenstein, M. N. Micro Electronics Circuits, PHI.

Internal work assessment
60% - Test papers (minimum 2)
30% - Assignments / Term project/any other mode decided by the teacher.
10% - Other measures like Regularity and Participation' in Class
Total marks = 50
University Examination Pattern
QI - 8 short questions of 5 marks, 2 from each module
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIV - 2 questions A and B of 15 marks from module I with choice to answer any one
QV - 2 questions A and B of 15 marks from module I with choice to answer any one.
Module I (10 hours)

Module II (12 hours)

Module III (12 hours)

Module IV (10 hours)
Analysis of polyphase circuits - 2 phase circuits - Three phase AC circuits - Generation of 3 phase AC voltages" - Balanced system - Phase sequence - Star-delta transformation - Balanced 3 phase AC source supplying balanced 3 phase star connected and delta connected loads - 3 wire and 4 wire systems - Neutral current - Active power, reactive power, apparent power, and power factor - Power factor.
Improvement-Unbalanced systems - Neutral shift (explanation and concept only) - Three phase power measurement - Three wattmeter and Two wattmeter methods.

Text Books
1. Hughes E. Electrical technology, Pearson Education.
2. D.P. Kothari & Nagarth - Theory and problems of Basic Electrical Engineering - Prentice Hall (India) PVT LTD.

Reference books
2. Van valkenberg, Electric circuits and network analysis, Prentice Hall (India) PVT LTPT
3. Smarjith Ghosh - Fundamentals of Electrical and Electronics Engineering Prentice Hall (India) PVT LTD.

Internal work assessment
60 % - Test papers (minimum 2)
30 % - Assignments/Term project/any other mode decided by the teacher.
10 % - Other measures like Regularity and Participation in Class.
Total marks = 50.

University examination pattern
QI - 8 short type questions of 5 marks 2 from each module.
QII- 2 questions A and B of 15 marks from module I with choice to answer any one
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one
QIV- 2 questions A and B of 15 marks from module III with choice to answer any one
Q V - 2 questions A and B of 15 marks from module IV with choice to answer any one
1. **Machine Shop Practice**
 - Study of different machine tools-lathe-shaper-milling machine- drilling machine-grinding machine
 - Exercises on lathe-models involving straight turning, taper turning, facing, knurling, boring, and thread machining-thread standards and specifications.

2. **Fitting Practice**
 - Study of hand tools and measuring tools used in fitting work
 - Fabrication exercises involving cutting, chiseling, filing, and drilling - use of thread dies and taps.

3. **Welding Practice**
 - Study of welding equipment and tools-safety practices.
 - Demonstration of electric arc welding, gas welding and cutting
 - Exercises involving preparation of different types of welded joints-lap and butt joints.
 - Demonstration of special welding processes-welding defects and weldment inspection

4. **Sheet metal work**
 - Study of tools and equipment for sheet metal work.
 - Types of joints in sheet metal work-cutting, bending, forming, and joining operations-development & fabrication of simple sheet metal components like tray, funnel, cylindrical dish, rectangular duct, etc.
 - Demonstration of brazing, soldering, shearing/cutting machine.

Internal work assessment

<table>
<thead>
<tr>
<th>Description</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop practicals and</td>
<td>30</td>
</tr>
<tr>
<td>2 tests</td>
<td>2x10 = 20</td>
</tr>
<tr>
<td>Total marks</td>
<td>50</td>
</tr>
</tbody>
</table>
EC04 - 111(P): ELECTRICAL AND ELECTRONICS WORKSHOP
(Common for EE, EC, AI, IC, BT, BM, CS, IT, PT)

2 hours practicals per week

Part A: Electrical Workshop (2 hours per alternate weeks)

1. Familiarisation of various types of Service mains - Wiring installations - Accessories and house-hold electrical appliances
2. Methods of earthing - Measurement of earth resistance - Testing of electrical installations - Precautions against and cure from electric shock
3. Practice of making Britannia joints on copper / aluminium bare conductors.
4. Practice of making Married joints on copper / aluminium conductors.
5. Practice of making T joints on copper / aluminium conductors
6. Wiring practice of a circuit to control 2 lamps by 2 SPST switches.
7. Wiring practice of a circuit to control 1 lamp by 2 SPDT switches.
8. Wiring practice of a circuit to control 1 fluorescent lamp and 1 three-pin plug socket.
9. Wiring practice of a main switch board consisting of ICDP switch, DB, MCB's, and ELCB's.
10. Familiarisation of various parts and assembling of electrical motors and Wiring practice of connecting a 3-phase / 1-phase motor with starter

Internal work assessment
Workshop practicals and record = 15
Tests = 10
Total marks = 25

Part B - Electronics Workshop (2 hours per alternate weeks)

1. Familiarisation of various electronics components such as resistors, AF&RF chokes, capacitors, transistors, diodes, IC's and transformers.
2. Assembling and soldering practice of single phase full wave bridge rectifiers circuit with capacitor filter.
3. Assembling and soldering practice of common emitter amplifier circuit.
4. Assembling and soldering practice of common emitter amplifier circuit on PCB.
5. Assembling and soldering practice of non inverter amplifier circuit using OPAMP on PCB.
7. Coil winding - Single layer and multi layer - Demonstration.
9. PCB layout using software like ORCARD, CIRCUITMAKER, EDWIN.
10. PCB fabrication – Demonstration.

Internal work assessment
Workshop practicals and record = 15
Tests = 10
Total marks = 25
THIRD SEMESTER

EN04 - 301A: ENGINEERING MATHEMATICS
(Common for all B.Tech. programme except CS and IT)

3 hours lecture and 1 hour tutorial per week

Module I
Linear Algebra: Vector spaces- linear dependence and impedance, and their computation-
Bases and dimension- Subspaces- Inner product spaces- Gram-Schmidt orthogonalization
process- Linear transformations- Elementary properties of linear transformations- Matrix of a
linear transformation. (Proofs of theorems omitted)

Module II
Fourier Transforms: Fourier integral theorem (proof not required)- Fourier sine and cosine
integral representations- Fourier transforms- Fourier sine and cosine transforms- Properties of
Fourier transforms- Singularity functions and their Fourier transforms.

Module III
Probability Distributions: Random variables- Mean and variance of probability distributions-
Binominal and Poisson distributions- Poisson approximation to binominal distribution-
Hypergeometric and geometric distributions- Probability densities- Normal, uniform and gamma
distributions.

Module IV
Theory of Inference: Population and samples- Sampling distributions of mean and variance-
Point and interval estimations- Confidence intervals for mean and variance- Tests of hypotheses-
Hypotheses concerning one mean, two mean, one variance and two variances- Test of goodness
of fit.

TEXTBOOKS

For Module I
K. B. Datta, Matrix and Linear Algebra for Engineers, Prentice-Hall of India, New Delhi,
2003
(Sections: 5.1, 5.2, 5.3, 5.4, 5.5, 5.8, 6.1, 6.2, 6.3)

For Module II
(Sections:9.1,9.3,9.5)

For Module III
Richard A Johnson, Miller & Freund's Probability and Statistics for Engineers, Pearson
Education, 2000. (Sections: 4.1,4.2,4.3,4.4,4.6,4.8, 5.1,5.2,5.5,5.7)

For Module IV
Richard A Johnson, Miller & Freund's Probability and Statistics for Engineers, Pearson
Education, 2000. (Sections: 6.1,6.2,6.3,7.1,7.2,7.4,7.5,7.8,8.1,8.2,8.3,9.5)
REFERENCES

Internal work assessment
60 % - Test papers (minimum 2)
30 % - Assignments/Term project/any other mode decided by the teacher.
10 % - Other measures like Regularity and Participation in Class.
Total marks = 50

University examination pattern
Q1 - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one
Module I (12 Hours)
Programming and problem solving- Basic computer organization- Developing algorithms- Flow charts- High level and low level languages- Compilers and interpreters- Steps involved in computer programming- Writing, compiling and executing a program- Debugging a program- Description of a programming language.

Module II (18 Hours)
Basics of C- Overview of C- Program structure- Lexical elements- Numerical constants- Variables- Arithmetic operators- Arithmetic Expressions- Arithmetic conversion- Increment and Decrement operators- Assignment expressions-Multiple assignments- Input and output- Format specifiers - Fundamental data types- Bit level operators and applications- Relational operators- Relational expressions- Logical operators- Logical expressions- Conditional operator- Precedence and associativity of operators.

Module III (16 Hours)
Compound statements- Conditional statements- if statement- if else statement-nested statement-switch statement- Loop control statements- While statement-do while statement- for statement- continue statement- break statement- go to statement- Functions- user defined functions- library functions- Recursion- Global, local and static variables.

Module IV (20 Hours)
Arrays- single dimensional- multi dimensional- Arrays in functions- Stacks-Strings- String processing- Bit-wise operators- Enumerated data types- Structures - Type def - Structures in Arrays- Arrays in structures- Unions- Pointers-Pointers and Arrays- Pointers and functions- Linear linked lists and list operations- Files- sequential files- unformatted files- text files.

Text books
Rajaraman V., Computer Programming in C, Prentice Hall of India

Reference Books:

Internal work assessment
60 % - Test papers (minimum 2)
30 % - Assignments/Term project/any other mode decided by the teacher.
10 % - Other measures like Regularity and Participation in Class.
Total marks = 50

University examination pattern
QI - 8 short type questions of 5 marks. from each module
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII- 2 questions A and B of 15 marks from modules II with choice to answer any one
Q IV- 2 questions A and B of 15 marks from module III with choice to answer any one.
Q V - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:

- To expose the students to basic concepts of electric circuits and methods of circuit analysis in time domain and frequency domain
- To introduce the fundamentals of filter circuits

Module I (14 hours)

Module II (12 hours)
Network functions - The concept of complex frequency - driving point and transfer functions - Impulse response - Poles and Zeros of network functions, their locations and effects on the time and frequency domain responses. Restriction of poles and zeros in the driving point and transfer function. Time domain behaviour from the pole - zero plot. Frequency response plots - Bode plot.

Module III (13 hours)

Module IV (13 hours)
Filters - Introduction and basic terminology - types of filtering - L.P filter basics - Butterworth LP filter transfer characteristics - Basic passive realization of Butterworth transfer functions. Frequency transformations - transformations to high pass, band pass and band elimination. Chebyshev filters - characteristics - poles of the Chebyshev function.

Text Books
1. R. A. DeCarlo and P. Lin, Linear Circuit Analysis, Oxford University Press, New Delhi, 2001
2. D. R. Choudhary, Networks and Systems, New Age International, New Delhi, 2000

Reference Books
Internal work assessment
60% - Tests (minimum 2)
30% - Assignments/term project/any other mode decided by the teacher
(One assignment shall be based on simulation of simple electric circuits using any software -eg. PSPICE, EDSPICE, MULTSIM)
10% - Other measures like regularity and participation in class
Total marks: 50.

University examination pattern
QI - 8 short type questions of 5 marks, from each module
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII- 2 questions A and B of 15 marks from modules II with choice to answer any one
Q IV- 2 questions A and B of 15 marks from module III with choice to answer any one.
Q V - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 – 304: ELECTRICAL ENGINEERING
(Common with AI04 304)

3 hours lecture and 1 hour tutorial per week

Module I: DC machines (10 hours)
Types of DC machines - DC generators - emf equation - Open circuit and load characteristics of different types of DC generators - DC motors - Principle of operation - Types - Torque equation - Characteristics - Starters

Module II: Transformers (10 hours)
Principle of operation - emf equation - Phasor diagram - Equivalent circuit - OC and SC tests - Basic principles of auto transformer and three phase transformer

Module III: AC machines (17 hours)
Alternator - Rotating field - Frequency effect of distribution of winding - emf equation - Basic principles of synchronous motor - Losses and Efficiency - Torque equation - Starting methods - Induction motor - Constructional features - Principle of operation of 3 phase induction motor - Vector diagram and equivalent circuits - Starting and speed control of squirrel cage and wound rotor induction motor

Module IV: Electrical measurements (15 hours)
Principle of Indicating instruments - moving coil, moving iron and dynamometer type instruments - Extension of range of voltmeter and ammeter - Measurement of 3 phase power by two wattmeter method - Principle and working of Induction type energy meter - DC slidewire, potentiometer - Wheat stone bridge - Kelvin's double bridge - AC bridges - Schering bridge, Maxwell's bridge

Internal work assessment
60% - Tests (minimum 2)
30% - Assignments/term project/any other mode decided by the teacher
10% - Other measures like regularity and participation in class
Total marks: 50

Text Book

Reference Books

University examination pattern
QI - 8 short type questions of 5 marks, from each module
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII - 2 questions A and B of 15 marks from modules II with choice to answer any one
Q IV - 2 questions A and B of 15 marks from module III with choice to answer any one
Q V - 2 questions A and B of 15 marks from module IV with choice to answer any one
Module 1 (13 Hours)
The transistor as an amplifier—Derivation of expression for small signal parameters—the transconductance input resistance—small signal emitter resistance—small signal equivalent models—the hybrid model and T Model of transistor. Analysis of common emitter amplifier—CE amplifier with emitter resistance—the resistance reflection rule—Analysis of the common base and Common collector amplifiers—complete static characteristics—internal capacitances—the high frequency hybrid pi model—the cut off frequencies, unity gain bandwidth.

Module 2 (13 Hours)
JFET biasing - FET amplifiers - MOSFET Amplifier—The enhancement and depletion MOSFETs—static characteristics—DC analysis—Amplifier using MOSFET—Biasing in discrete circuits and biasing in IC—Small signal equivalent circuit models’—analysis of common source and common gate amplifiers

Module 3 (13 Hours)
The amplifier gain function —Low frequency and high frequency responses— Use of open circuit and short circuit time constants in finding the cut-off frequencies—Low and high frequency response of common emitter amplifier, common source amplifier- Emitter and source followers.

Module 4 (13 Hours)
Feedback amplifiers—the general feedback structure—effects of negative feedback—Analysis of negative feedback amplifiers—Stability—Study of stability using Bode Plots.
Oscillators- RC phase shift, Wein Bridge, LC and Crystal Oscillators - analysis - UJT Characteristics and relaxation Oscillator

Internal work assessment
60% - Tests (minimum 2)
30% - Assignments/term project/any other mode decided by the teacher
10% - Other measures like regularity and participation in class
Total marks: 50

Textbooks:
2. Sedra and Smith: *Microelectronic Circuits*, Oxford University Press

References:
2. Spencer & Ghausi: *Introduction to Electronic Circuit Design*, Pearson

University Examination Pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one
QIV- 2 questions A and B of 15 marks from module III with choice to answer any one
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 – 306: SOLID STATE DEVICES

3 hours lecture and 1 hour tutorial per week

Module 1 (13 Hours)
Conductivity property of solids-energy bands - semiconductors-direct and indirect semiconductors - charge carriers in semiconductors-effective mass - Carrier concentrations-Fermi level-temperature dependence of carrier concentration-drift of carriers – mobility-excess carrier generation-Conductivity due to diffusion of excess carriers-carrier lifetime - diffusion process - continuity equation-steady state carrier injection-diffusion length - Quasi Fermi level

Module 2 (13 Hours)
PN -Junctions-contact potential-equilibrium Fermi levels-space charge at a junction-Expression for Current flow through a junction -reverse bias current-break down mechanisms of the junction in reverse bias-rectifiers, Zener diode-Transient and ac conditions-time variation of stored charge, Switching diodes, capacitance of PN junction, The Varactor diodes-Effects of contact potential on carrier injection, graded junctions- Metal semiconductor junctions- Hetero junctions.

Module 3 (13 Hours)
Bipolar junction transistors-Minority carrier distribution and terminal currents- the coupled diode model-charge control analysis-switching -Drift in the base region, Base narrowing, Avalanche breakdown,
Kirk effect-frequency limitations of transistor-capacitance and charging times-Hetero junction bipolar transistors.
Field effect transistors-various types of FETs-Junction FET, MESFET, Metal Insulator Semiconductor FET, MOSFET - Models, Characteristics and physical effects.

Module 4 (13 Hours)
Optoelectronic devices-Photo diodes-light emitting diodes-Semiconductor lasers-Power devices-PNPN diode-The Semiconductor Controlled Rectifier- Insulated Gate Bipolar Transistor-UJT-physical structure, characteristics and applications of each of the above devices.

Internal work assessment
60% - Tests (minimum 2)
30% - Assignments/term project/any other mode decided by the teacher
10% - Other measures like regularity and participation in class
Total marks : 50

Text Books:
Pearson/PHI

References:

University Examination Pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
1. Measurements using CRO
2. Diode and Zener diode characteristics - DC and dynamic resistance
3. First order LPF/HPF with R & C for a given cut off frequency
4. Clipping and clamping circuits with diodes
5. Half wave rectifier with C, LC filters
6. Full wave rectifiers with C, LC filters
7. CE configuration determination of h-parameters
8. CB configuration determination of h-parameters
9. MOSFET/JFET characteristics Common Source and Common Drain modes
10. Series Voltage Regulator

Internal work assessment
- 50% - Laboratory practical and record
- 40% - Test/s
- 10% - Other measures like regularity and participation in class

Total marks: 50.
1. Plot open circuit characteristics of DC shunt generator for rated speed - Predetermine O.C.C. for other speeds - Determine critical field resistance for different speeds.
2. Load test on DC shunt generator - Plot external characteristics - Deduce internal characteristics
3. Load test on DC series motor - Plot the performance characteristics
4. OC and SC tests on single phase transformer - Determine equivalent circuit parameters - Predetermine efficiency and regulation at various loads and different power factors - verify for unity power factor with a load test.
5. Load test on 3 phase cage induction motor - Plot performance curves.
6. Resistance measurement using a) Wheatstone's bridge b) Kelvin's double bridge
7. Measurement of self inductance, mutual inductance and coupling coefficient of
 a) Transformer windings b) air cored coil
8. Power measurement in 3 phase circuit - Two wattmeter method
9. Extension of ranges of ammeter and voltmeter using shunt and series resistances
10. Calibration of Single phase energy meter by direct loading

Internal work assessment
50% - Laboratory practical and record
40% - Test/s
10% - Other measures like regularity and participation in class
Total marks: 50
FOURTH SEMESTER

EN04 401A ENGINEERING MATHEMATICS - IV
(Common for all B. Tech. programmes except CS and IT)

3 hours lecture and 1 hour tutorial per/week

Module I

Module II
Functions of a Complex Variable II: Line integral in the complex plane- Cauchy's integral theorem (Proof of existence of indefinite integral to be omitted)- Cauchy's integral formula- Derivatives of analytical functions (proof to be omitted)- Taylor series- Laurent series- Singularities and zeros- Residues and residue theorem- Evaluation of real integrals.

Module III
Series Solutions of Differential Equations:
(i) Power series method for solving ordinary differential equations- Legendre's equation and Legendre polynomials- Rodrigue's formula- Generating functions- Relations between Legendre polynomials- Orthogonality property of Legendre polynomials (proof omitted).

(ii) Frobenius method for solving ordinary differential equations- Bessel's equation- Bessel functions- Generating functions- Relations between Bessel functions- Orthogonality properties of Bessel functions (proof omitted).

Module IV
Partial Differential Equations: Basic concepts- Classification of linear PDE's- Derivation of the one dimensional wave equation and the one dimensional heat equation- Solutions of these equations by the method of separation of vari-ables- Solutions satisfying initial and boundary conditions- D'Alembert's solution of the one dimensional wave equation- Steady state two dimensional heat flow.

Text Book:

Module I
Sections: 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9

Module II
Sections: 13.1, 13.2, 13.3, 14.4, 15.1, 15.2, 15.3, 15.4

Module III
Sections: 4.1, 4.3, 4.4, 4.5

Module IV
Sections: 11.1, 11.2, 11.3, 11.4, 11.5
REFERENCES

Internal work assessment
60% - Tests (minimum 2)
30% - Assignments/term project/any other mode decided by the teacher
10% - Other measures like regularity and participation in class
Total marks: 50.

University Examination Pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objective:
The importance of environmental science and environmental studies cannot be disputed. Continuing problems of pollution, loss of forest, solid waste disposal, degradation of environment, loss of bio diversity etc. have made everyone aware of environmental issues. The objective of this course is to create general awareness among the students regarding these environmental issues

Module 1 (12 Hours)
The multidisciplinary nature of environmental studies
Definition- Scope and importance- need for public awareness.

Natural Resources
Renewable and non renewable resources:
Natural resources and associated problems- forest resources: use and over exploitation, deforestation, case studies. Timber extraction, mining, dams and their defects on forests and tribal people- water resources: Use and over utilization of ground and surface water, floods, drought, conflicts over water, dam benefits and problems- Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies - Food resources: world food problems, changes caused by agriculture overgrazing, effects of modem agriculture, fertilizer-pesticide problems, water logging, salinity, case studies - Energy resources: Growing energy needs, renewable and non renew-able energy sources, use of alternate energy sources, case studies - Land resources: Land as a resource, Land degradation, man induced land slides, soil erosion and desertification- role of an individual in conservation of natural resources- Equitable use of resources for sustainable life style.

Module 2 (12 Hours)
Ecosystem: Concept of an ecosystem- Structure and function of an ecosystem-producers, consumers and decomposers- Energy flow in the ecosystem- ecological succession- Food Chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the following ecosystems: Forest ecosystem- grassland ecosystem - desert ecosystem -aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries)

Bio diversity and its conservation Introduction-definition: genetic, species and ecosystem diversity- bio geographical classification of India- value of bio diver-sity: consumptive use, productive use, social, ethical, aesthetic, and option values - Bio diversity at global, national, and local levels - India as a mega diversity nation - hot spots of Bio diversity- threads to bio diversity: habitat loss, poaching of wild life man- wildlife conflicts- endangered and endemic species of India - conservation of bio diversity : in-situ and ex-situ conservation of bio diversity

Module 3 (11 Hours)
Environmental pollution Definition-causes, effects and control measures of :-air pollution-water pollution- soil pollution- marine pollution- noise pollution-thermal pollution- nuclear hazards- solid waste
management: causes, effects and control measures of urban and industrial wastes-role of an individual in prevention of pollution- pollution case studies - Disaster management: Floods, earth quake, Cyclone and Land slides- environmental protection act- air (prevention and control of pollution) act - water (prevention and control of pollution) act - wild life protection act- forest conservation act -issues involved in enforcement of environmental legislation- public awareness.
Module 4 (10 Hours)

Social Issues and the environment
From unsustainable to sustainable development- urban problems related to energy- water conservation, rain water harvesting, water shed management- resettlement and rehabilitation of people; its problems and concerns, case studies- Environmental ethics: Issues and possible solutions- climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, case studies- waste land reclamation- consumerism and waste products.

Human population and the environment

Field work (5 Hours)
• Visit to a local area to document environmental assets- river/forest/grassland/hill/mountain
• Visit to local polluted site- urban/rural/industrial/agriculture
• Study of common plants/insects/birds
• Study of simple eco systems- pond, river, hill slopes etc.

Text books

Reference Books
2. Bharucha Erach, Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad-380 013, India, Email: mapin@icenet.net
6. Down to Earth, Centre for Science and Environment
8. Hawkins, R.E. Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay
15. Survey of the Environment, The Hindu (M)

Internal assessment:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tests</td>
<td>20</td>
</tr>
<tr>
<td>Field work and Report (Internal Assessment)</td>
<td>25</td>
</tr>
<tr>
<td>Regularity</td>
<td>05</td>
</tr>
<tr>
<td>Total marks</td>
<td>50</td>
</tr>
</tbody>
</table>

University Examination Pattern:

QI - 16 short answer questions (4 from each module) of 5 marks each with choice to answer any 12 (12 x 5)

QII - 2 questions A and B of 10 marks from module I with choice to answer anyone

QIII - 2 questions A and B of 15 marks from module III with choice to answer any one

QIV - 2 questions A and B of 15 marks from module III with choice to answer any one

QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 – 403: DIGITAL ELECTRONICS

3 hours lecture and 1 hour tutorial per week

Objective:
To provide a basic idea in Digital principles, combinational circuits, sequential circuits and design of the above circuits.

Module 1 (13 Hours)
Logic Circuits-truth tables -Boolean algebra-synthesis in standard forms- design examples-optimized implementation of logic functions- Minimisation techniques (Karnaugh map & Queen Mclusky methods)-Multi level synthesis and analysis -cubical representation and minimization-Number representation and arithmetic circuits-Signed and unsigned adder subtracers-fast adders-fixed point- floating point-and BCD representations-ASCII character code.

Module 2 (13 Hours)
Introduction to logic families and their characteristics (TTL,ECL,CMOS) - Interfacing - Combinational circuit building blocks-multiplexers-decoders-encoders-code converters-Flip flops-SR, D, T, JKM/S & edge triggered flip flops-registers-counters-reset synchronization-BCD, ring, Johnson counters.

Module 3 (13 Hours)

Module 4 (13 Hours)
Asynchronous sequential circuits-Analysis and synthesis-state reduction-transition diagram-Exploiting unspecified next state entries-state assignment using additional state variables-one hot sate assignment – Hazards-Static hazards-Dynamic hazards-Significance of Hazards

Internal work assessment
60% - Tests (minimum 2)
30% - Assignments/term project/any other mode decided by the teacher
10% - Other measures like regularity and participation in class
Total marks: 50

Text Book:
1. Taub and Schilling *Digital Principles and applications*
2. N N Biswas *Logic design Theory* PHI

References:
5. Roth C H, *Fundamentals of Logic design*, Jaico
University Examination Pattern

QI - 8 short type questions of 5 marks, 2 from each module.

QII - 2 questions A and B of 15 marks from module I with choice to answer any one.

QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.

QIV - 2 questions A and B of 15 marks from module III with choice to answer anyone.

QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Module 1
Design methodology - the register level components, devices and design-the processor level components and design - Processor basics - CPU Organization - Data Representation - Instruction set - Instruction formats-types and programming considerations.

Module 2
Data path design - fixed point arithmetic - various operations - arithmetic & logic units - combinational and sequential ALUs. Floating point arithmetic - pipeline processing - Control design - Hardwired control - micro programmed control.

Module 3
Memory Organization - memory technology - Device characteristics - Random access memories - serial access memories - Memory systems - multi level memories - Address translation memory allocation - caches - features - address mappings - Structures versus performance.

Module 4
System organization - communication methods - basic concepts, bus control - I/O and system control - Programmed I/O - DMA and interrupts; I/O processors- Parallel processing - Processor level parallelism-multiprocessors-shared bus systems.

Internal work assessment
60% - Tests (minimum 2)
30% - Assignments/term project/any other mode decided by the teacher
10% - Other measures like regularity and participation in class
Total marks: 50

Text Book:
 Mc Graw-Hill

References:

University Examination Pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Module 1 (13 Hours)
Differential Amplifiers - The BJT differential pair - Large and small signal operation - The MOS differential pair - Large and small signal operation - Non ideal characteristics of the differential amplifier - Differential amplifier with active load - Frequency response analysis. Two stage CMOS Op-Amp - circuit, Common mode range and output swing, voltage gain, frequency response, slew rate.

Module 2 (13 Hours)
RC differentiator and integrator circuits - Compensated attenuators - Pulse transformer - Blocking oscillator - Bistable multivibrator principles, analysis - fixed bias and self biased transistor bistable circuit - triggering methods - Schmitt trigger analysis of emitter coupled circuit.

Module 3 (13 Hours)
Monostable multivibrator - principle and analysis - collector coupled and emitter coupled versions - triggering - astable multivibrators - collector coupled and emitter coupled circuits - analysis - sweep circuits - principles of miller and bootstrap circuits

Module 4 (13 Hours)
Power amplifiers - Class A, B, AB, C, D & S power amplifiers - Harmonic distortion - Efficiency - Wide band amplifiers - Broad banding techniques - Low frequency and high frequency compensation - Cascode amplifier - Broadbanding using inductive loads

Internal work assessment
60% - Tests (minimum 2)
30% - Assignments/term project/any other mode decided by the teacher
10% - Other measures like regularity and participation in class
Total marks: 50

Text books

Reference books

University Examination Pattern
QI - 8 short type questions of 5 marks, 2 from module
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII - 2 questions A and B of 15 marks from module III with choice to answer any one
QIV - 2 questions A and B of 15 marks from module IV with choice to answer any one
QV - 2 questions A and B of 15 marks from module V with choice to answer any one
EC04 – 406 : ANALOG COMMUNICATIONS

3 hours lecture and 1 hour tutorial per week

Module-1
Linear continuous wave modulation - band pass signals and systems - Amplitude modulation - modulators and transmitters - SSB signals, spectra and generation - VSB - signal and spectra - frequency conversion and demodulation. Exponential continuous- wave modulation - FM & PM - narrow band case, tone modulation, multi tone periodic modulation. Transmission band width and distortion - various cases - Generation and detection of FM and PM - various approaches - interference, de-emphasis and pre-emphasis, capture effect.

Module -2
Receivers for continuous wave modulation - super-het direct conversion and special purpose receivers, receiver specifications, multiplexing systems - frequency division, Quadrate carrier and time division multiplexing - cross talk and guard time comparison of TDM and FDM. Phase locked loop operation, synchronous detection and frequency synthesis FM detection. Television systems - video signals, resolution and band width - Monochrome transmitters and receivers, basic principles of color TV and HDTV.

Module-3
Review of probability models - Random signals and noise - Ensemble average and correlation, Ergodic and stationary processes, Gaussian processes - power spectrum, super position and modulation, filtered random signals - noise - thermal noise white noise, noise equivalent band width - base band signal transmission with noise - pulse measurements in noise

Module-4
Noise in analog modulation systems - band pass noise - system models, quadrature components, envelope and phase - linear continuous wave modulation with noise - synchronous detection, envelope detection and threshold effect Exponential continuous wave modulation with noise - pos detection noise destination S/N, FM threshold effect - comparison of continuous wave modulation systems.

Sampling and reconstruction - pulse amplitude modulation, pulse time modulation-ideal ampling, practical sampling and aliasing.

Internal work assessment
60% - Tests (minimum 2)
30% - Assignments/term project/any other mode decided by the teacher
10% - Other measures like regularity and participation in class
Total marks: 50

Text book:

References.
3. Dennis Roddy, John Coolen, "Electronic Communications", PHI
6. Tomasi, Electronic Communication: Fundamentals Through Advanced, Pearson Education
University Examination Pattern

QI - 8 short type questions of 5 marks, 2 from module

QII - 2 questions A and B of 15 marks from module I with choice to answer any one

QIII - 2 questions A and B of 15 marks from module III with choice to answer any one

QIV - 2 questions A and B of 15 marks from module IV with choice to answer any one

QV - 2 questions A and B of 15 marks from module V with choice to answer any one
1. Feed back voltage regulator with short circuit protection
2. Voltage regulation with Zener diode and pass transistor.
3. RC coupled amplifier - design for gain - frequency response
4. JFET amplifier - design for gain - frequency response
5. Feedback amplifiers - gain & frequency response
6. Emitter follower with and without complementary transistors - frequency response
7. Phase shift oscillator using BJT/FET
8. LC Oscillators
9. Power amplifier
10. Cascode amplifier - frequency response
11. Active load MOS amplifier
12. UJT characteristics and relaxation oscillator
13. Narrow band high gain tuned amplifier

Internal work assessment
50% - Laboratory practical and record
40% - Test/s
10% - Other measures like regularity and participation in class

Total marks: 50.
1. Characteristics of TTL gates
2. Code converters using basic gates
3. Combinational logic design using decoders and MUXs
4. Half and full adders and subtractors
5. Four bit adder, subtracter and BCD adder using adder ICs
6. Implementation of single cell Arithmetic Logic Unit and study of ALU ICs
7. Astable and monosatable multivibrators using CMOS gates
8. Study of flip flops
9. Ripple, Johnson and Ring counters
10. Synchronous counters, Random sequence generators
11. A sequence detector circuit
12. Interfacing and-addressing memory chips
13. ADC circuits (counter ramp and dual slope) & ICs
14. DAC circuits & ICs

Internal work assessment
50%-Laboratory practical and record
40%- Test/s
10%- Other measures like regularity and participation in class
Total marks: 50
FIFTH SEMESTER

EC04 - 501: SIGNALS AND SYSTEMS
(Common with AI 04 501, IC 04 501 and BM04 501)

3 hours lecture and 1 hour tutorial per week

Objectives

- To impart the basic concepts of continuous and discrete signals and systems
- To develop understanding about frequency domain approaches used for analysis of continuous and discrete time signals and systems
- To establish the importance of z-transform and its properties for analysing discrete time signals and systems

Module I (12 hours)
Introduction to signals and systems-classification of signals-basic operations on signals-elementary signals-concept of system-properties of systems-stability, invertibility, time invariance, linearity, causality, memory, time domain description-convolution-impulse response-representation of LTI systems-differential equation and difference equation representation of LTI systems

Module II (15 hours)
Fourier representation of continuous time signals- Fourier transform-existence of the Fourier integral- FT theorems-energy spectral density and power spectral density-frequency response of LTI systems-correlation theory of deterministic signals-condition for distortionless transmission through an LTI system-transmission of a rectangular pulse through an ideal low pass filter-Hilbert transform-sampling and reconstruction

Module III (13 hours)
Fourier representation of discrete time signals- discrete Fourier series and discrete Fourier transform- Laplace Transform analysis of systems-relation between the transfer function and differential equation-causality and stability-inverse system-determining the frequency response from poles and zeroes

Module IV (14 hours)
Z-transform-definition-properties of the region of convergence-properties of the Z-transform-analysis of LTI systems-relating the transfer function and difference equation-stability and causality-inverse systems-determining the frequency response from poles and zeroes

Text Books

Reference Books
Internal work assessment

60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern

QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer anyone.
EC04 - 502: MECHANICAL ENGINEERING

3 hours lecture and 1 hour tutorial per week

Objectives:
After studying this paper students should be aware of the basic principles of thermodynamics and areas where it can be applied.

Module I (13 hours)
Thermodynamics - thermodynamics systems - thermodynamic properties and processes - heat and work - equation of state - properties of ideal gases - properties of pure substances Zeroth law of thermodynamics - temperature scales - first law of thermodynamic - heat, work and energy of closed and open systems - concept of internal energy - enthalpy - second law of thermodynamics - concept of entropy - availability of work and energy

Module II (13 hours)
Engineering applications of thermodynamics - air cycles - Carnot cycle - otto and diesel cycles - principle of operation of 2 stroke and 4 stroke engines, vapour power cycles - Mollier diagram - ranking cycle

Module III (13 hours)
Heat transfer - basic modes of heat transfer - conduction, convection and radiation - conduction - Fourier law of conduction - general conduction equation - convection - forced and free convection - heat transfer relations - radiation - laws of radiation - concepts of black body

Module IV (13 hours)
Fluid mechanics - laws of fluid motion, continuity, momentum and energy equations - Bernoulli’s equation and its application to flow and velocity measuring devices - capillary flow and viscous flow

Text books
1. Rajendra Prakash & Gupta, Engineering Thermodynamics

Reference books
1. Michael saad, Thermodynamics for Engineers, Prentice Hall
2. Spalding & Cole, Engineering Thermodynamics, Edward Arnold

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII-2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV- 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 - 503: LINEAR INTEGRATED CIRCUITS

3 hours lecture and 1 hour tutorial per week

Objectives:
To enable the student for designing efficient practical circuits using Op - Amps, timer, PLL, VCO and Voltage regulator chips.

Module-1

Module-2
Active filters - filter transfer function - Butterworth and Chebyshev filters First order and second order functions for low-pass high-pass band-pass band- stop and all-pass filters - Sallen - key LPF and HPF - Dellyannis-Friend band pass filters - twin-tee notch filter - Second order LCR Resonator and realizations] of various types - Filters based on inductor replacement - switched capacitor] filters

Module-3
Data converters - definitions and specifications - D/A converters - Weighted resistor and R-2R DAC - Bipolar DAC - A/D converters - Counter, Ramp, tracking, Successive approximation, Integrating type and flash ADCs. Linear voltage regulators - protection mechanisms - LM723 Functional diagram -Design of voltage regulator using 723 - Three terminal Voltage regulators - functional operation of 78XX series IC and design of fixed and adjustable regulators

Module-4

Text Book
1. Sergio Franco - Design with Operational Amplifiers & Analog integrated Circuits
3. Gayekwad

References
Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer anyone.
QIV- 2 questions A and B of 15 marks from module III with choice to answer any one,
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
To make the student introduced with the concepts of field theory and fundamental equations. This paper is a pre-requisite for the "Radiation and propagation" and "Microwave engineering" in further semesters.

Module 1 (13 hours)

Module 2 (13 hours)
Steady electric currents and current density - equation of continuity - Joules law - boundary conditions for current density - Magnetostatics - Biot-Savart Law, Amperes' law - magnetic vector potential, magnetic field intensity - magnetic materials & properties - Boundary conditions for magnetic fields - energy in magnetic fields - forces and torques. Motional electromotive force - Faradays Law of electromagnetic induction

Module 3 (13 hours)
Maxwell's Equations - derivation from basic laws - boundary conditions - time harmonic fields - Poynting theorem - Plane waves propagation - General wave equations - Plane electromagnetic waves - Plane waves in free space, dielectric and conducting media - surface resistance - Wave polarization - linear, elliptic and circular - Normal and oblique incidences of uniform plane waves at conducting and dielectric boundaries.

Module 4 (13 hours)
Parallel wire transmission line - analysis - input impedance, quarterwave and halfwave lines - standing waves - VS WR - impedance matching - Smith chart - transmission lines- transients in transmission lines - Skin effect and resistance Waveguides - wave equations in Cartesian Coordinates - TM and TE modes - Waveguide Cavity resonators.

Text Book,
1. Guru & Hiziroglu - Electromagnetic Field Theory

References,
1. Kraus J.D., Electromagnetics, McGraw Hill
2. Mattew N.O., Sadiku, Elements of Electromagnetics, Addison Wesley
3. Cheng D.K., Field and Wave Electromagnetics, Addison Wesley
5. Premlet B., Electromagnetic Theory with Applications, Phasor Books

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer anyone.
Objectives: To study the basic principles of "electronic measurements and instrumentation techniques. With this paper, students should be able to come up with techniques for measuring values of passive components and quantities like temperature, pressure, voltage, current, frequency, phase difference, distortion, spectral parameters etc.

Module 1 (13 Hours)
Measurement errors - classification of errors - accuracy, precision, resolution, significant figures - error combinations- basics of statistical analysis - Sensing elements - Potentiometers - resistance thermometers - strain gauges - capacitive sensing elements - electromagnetic sensing elements - thermoelectric sensing elements - static and dynamic characteristics of piezo electric sensing elements.

Module 2 (13 Hours)
Analog Electronic Volt-Ohm-Milliammeters - Transistor, OPAMP and FET based circuits - multimeter probes - DVMs. Frequency meters - frequency accuracy, time and ratio measurements - counter meters.

Module 3 (13 Hours)
Resistance measurements - various methods, bridges - Inductance and capacitance measurements - ac bridges, digital RLC meters - Signal generators - low frequency, function, pulse and R F generators, sweep frequency generators, arbitrary waveform generators - Graphic recording instruments - strip chart and XY recorders, plotters, digital waveform recorders and analyzers.

Module 4 (13 Hours)
Storage oscilloscopes - various controls and measurement techniques, oscilloscope probes, Waveform analyzing instruments - distortion meter, spectrum analyzer. Thermocouple instruments - peak response voltmeter - true RMS meters, low level voltmeter/ammeter.

Text Book:
(Module 1): John P Bentley: Principles of Measurement systems, Pearson Education
(Modules 2,3,4): David A Bell: Electronic Instrumentation and measurements, PHI

References:
1. Oliver B M & Cage: Electronic Measurements & Instrumentation, TMH
2. Cooper W: Electronic Instrumentation and Measurement Techniques, PHI

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer anyone.
EC04 - 506: MICROPROCESSORS & MICROCONTROLLERS

Objectives:
To introduce the student with knowledge about architecture, interfacing and programming with 8086 and 8051. With this paper, the student should be able to design microprocessor / microcontroller based system (both hardware and software) for any relevant application.

Module 1 (13 Hours)
Software Architecture of the 8086/8088 microprocessors - Address space, Data organization, registers, memory segmentation, & addressing, stack, I/O space. Assembly language programming and program development.

Module 2 (13 Hours)
8086/88 microprocessor architecture - min/max modes - hardware organization of address space - control signals and I/O interfaces – Memory devices, circuits and subsystem design - various types of memories, wait state and system memory circuitry.

Module 3 (13 Hours)
I/O interface circuits - handshaking, parallel printer Interfacing – Address decoding - Interfacing chips - Programmable peripheral interface (8255) - Programmable communication interface (8251) - Programmable timer (8253) - DMA controller (8237/8257) - Programmable interrupt controller (8259) - Keyboard display interface (8279)

Module 4 (13 hours)
Intel 8051 microcontroller.- CPU operation - Memory space - Software overview - Peripheral overview - Interrupts - timers - parallel port inputs and outputs - Serial port - Low power Special modes of operation

Text books
1. Hall D. V., Microprocessors & Interfacing, McGraw Hill

Reference books
1. Intel Data Book Vol. 1, Embedded Microcontrollers and Processors
3. Mohammed R., Microprocessors & Microcomputer Based System Design, Universal Bookstall

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer anyone.
QIII-2queslionsAandBof15marksfrommoduleIlwithchoice to answer any one.
QIV- 2 questions A and B of 15 marks from module III with choice to answer any one.
QV- 2 questions A and B of 15 marks from module IV with choice to answer any one
EC04 - 507(P): LINEAR INTEGRATED CIRCUITS LAB

3 hours practical per week

Objective:

To Design and set up different Electronic Circuits using operational amplifiers

1. Measurement of op-amp parameters - CMRR, slew rate, open loop gain, input and output impedances
2. Inverting and non-inverting amplifiers, integrators and differentiators - frequency response
3. Comparators- Zero crossing detector- Schmitt trigger- precision limiter
4. Instrumentation amplifier - gain, CMRR and input impedance
5. Single op-amp second order LFF and HPF - Sallen-Key configuration
6. Narrow band active BPF - Delyanni configuration
7. Active notch filter realization using op-amps
8. Wein bridge oscillator with amplitude stabilization
9. Astable and monostable multivibrators using op-amps
10. Square, triangular and ramp generation using op-amps
11. Voltage regulation using IC 723
12. Astable and monostable multivibrators using IC 555
13. Design of PLL for given lock and capture ranges & frequency multiplication
14. Log and Antilog amplifiers

Internal work assessment

60%-Laboratory practical and record
30% - Test/s
10% - Other measures like regularity and participation in class

Total Marks = 50.
EC04 - 508(P): ANALOG COMMUNICATION LAB

3 hours practical per week

Objective:

To design and setup circuits for Analog communication

1. AM generation
2. AM detection with simple and delayed AGC
3. Balanced modulator for DSB-SC signal
4. Mixer using JFET/B JT
5. FM generation (reactance modulator)
6. FM demodulation
7. PAM generation and demodulation
8. Generation and demodulation of PWM and PPM
9. Implementation of intermediate frequency amplifier
10. FM demodulation using PLL
11. AM generation and demodulation using opamps /IC multipliers
12. SSB generation and demodulation using integrated circuits

Internal work assessment
60%-Laboratory practical and record
30%- Test/s
10%- Other measures like regularity and participation in class
Total Marks = 50
SIXTH SEMESTER

EC04 - 601: ENGINEERING ECONOMICS & PRINCIPLES OF MANAGEMENT

3 hours practical per week

(Common with AI 04 601 BM 04 601, EE04 601, CE04 601)

PART A: ENGINEERING ECONOMICS

Objective:
To create general awareness on the basic principles of Economics with special reference to India.

Module I (13 Hours)
1. Introductory Background - Nature and scope of Economics, Science, Engineering and Technology, their relationship with economic development.
2. Basic Economic Concepts - Wants and utility, Demand and supply, Elasticity of demand and supply, concept of cost and revenue, concept of equilibrium and margin, wealth and capital.

Module II (13 Hours)
5. Agriculture - Role of Agriculture in Indian Economy - Problems of Indian Agriculture - Green Revolution in Indian Features and effects.

PARTS: PRINCIPLES OF MANAGEMENT

Objective:
An elementary level exposure of management principles relevant for industrial sector.

Module III (13 hours)
Need for management - principles of management - management functions - span of control - delegation - directing - leadership and motivation (basic concepts only)

Theories of scientific management (an overview only expected) - Fredric Taylor's theory - Frank Gilbreth's theory - Henry Foyal's theory - present concepts of management.
Financial management - objectives and functions - time value of money (numerical examples included) - basics of financial accounting (problem solving not required) - profit and loss account - balance sheet (only introduction) - sources of industrial finance - shares - debentures - public deposits - bank loans - financial institutions.
Module IV (13 hours)
Marketing management -concept of market and marketing - marketing mix - market research - advertising and sales promotion.
Scope and objective of Human Resource Management - manpower recruitment analysis - recruitment and training - job analysis - job evaluation - wages and incentives.
Decision making - Introduction and definition - techniques of decision making - decision making process - under certainty, uncertainty and risk (problems not included).
Network analysis - CPM and PERT (analysis of simple networks).

Text Books
1. F. Mazda, Engineering management, Addison Wesley, Longman Ltd., 1998
6. K.K.Dewett, Modern, Economic Theory
7. Ishwar.C.Dhingra, The Indian Economy (Resources Planning development and Problem)

Reference Books

Internal assessment:
Assignments = 15 Marks
Economics: Assignments should help students to appreciate necessity of economics in Engineering Management: individual documentation of best management practices by various organizations
2 Tests 2x15 = 30 Marks
Regularity = 05 Marks
Total = 50 Marks

University examination Pattern:
(Part A and Part B should be written on separate answer books)
Part A
QI - 4 short type questions of 5 marks each module
QII - 2 questions A and B of 15 marks each, 2 from module with module I with choice to answer any one
QIII - 2 questions A and B of 15 marks, 2 from module II with choice to answer any one.

Part B
QI - 4 short type questions of 5 marks each module.
QII - 2 questions A and B of 15 marks, 2 from module III with choice to answer any one
QIII- 2 questions A and B of 15 marks each, 2 from module IV with choice to answer any one.
EC04 - 602: DIGITAL SIGNAL PROCESSING

3 hours lecture and 1 hour tutorial per week

Objectives:
To provide basic ideas (i) in the transforms used in digital domain (ii) in the design and hardware realization of digital filters

Module 1 (13 Hours)
Review of Discrete Fourier Series and Discrete-Time Fourier Transform - Frequency domain sampling and reconstruction of discrete time signals - The Discrete Fourier Transform - DFT as a linear transformation - relationship to other transforms - properties of DFT - Linear filtering methods based on DFT - frequency analysis of signals using DFT- Efficient computations of the DFT-Fast Fourier Transform algorithms - direct computation, divide-and-conquer approach, radix-2, radix-4 and split radix algorithms - implementation of FFT algorithms - Applications of FFT-Wavelet transforms (Introduction only)

Module 2 (13 Hours)
Structures for realization of discrete time systems - structures for FIR and IIR systems - signal flow graphs, direct-form, cascade-form, parallel form, frequency sampling, lattice and transposed structures - representation of numbers & errors due to rounding and truncation - Quantization of filter coefficients - round off effects in digital filters - limit cycle oscillations, scaling for overflow prevention.

Module 3 (13 Hours)
Design of digital filters - general considerations - causality and its implications, characteristics of practical frequency selective filters - design of FIR filters - symmetric and antisymmetric, linear phase - design of IIR filters from analog filters - using approximation of derivatives, impulse invariance, bilinear transformation, matched-z transformation, characteristics of standard filters and their designs - Frequency transformations in the analog and digital domains.

Module 4 (13 Hours)
Computer architectures for signal processing - Harvard architecture, pipelining, multiplier-accumulator, special instructions for DSP, replication, on chip storage, extended parallelism - general purpose DSP Processors - implementation of DSP algorithms for various operations - special purpose DSP hardware - hardware digital filters and FFT processors - case study and overview of TMS 320 series processor.

Text Books:

References:
4. Rao R M and Bopardikas A S Wavelet transforms - Introduction
Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks =50.

University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 - 603: CONTROL SYSTEMS
3 hours lecture and 1 hour tutorial per week

Objectives:
To provide the basic theory behind the analysis of continuous and discrete systems in time and frequency domains. This paper also introduces concepts about the state space modeling of systems.

Module I (13 hours)
Transfer functions - block diagrams-order and type-signal flow graph- Mason's Gain formulæ- Block diagram reduction using direct techniques and signal flow graphs-examples- derivation of transfer function of simple systems from physical relations - low pass RC filter - RLC series network - spring mass damper - DC servomotor for position and speed control - low pass active filter -

Module II (15 hours)
1. Time Domain analysis:
Analysis of Continuous Time systems-Transient and Steady State Responses- Standard Test Signals- Response comparisons for various Root locations in the S-plane -Time Domain Solutions of First Order Systems-Step Response of Second order system- Time domain specifications- Relationships between Damping ratio and the amount of Overshoot for a Second Order system.

 • Effect of Derivative and Integral Control on the Transien
 • Performance of feed back Control systems.
 • Steady State Response -steady state error -computation of S. S. error- error constants.
 • Concept of Stability- Routh - Hurwitz Criterion.
 • Construction of Root locus.

2. Frequency Domain Analysis:

Module III (12 hours)
Modeling of discrete - time systems - sampling - mathematical derivations for sampling - sample and hold - Z-transforms-properties - solution of difference equations using Z - transforms - examples of sampled data systems - mapping between s plane and z plane - cyclic and multi-rate sampling (definitions only) - analysis of discrete time systems - pulse transfer function - examples – stability - Jury's criterion - bilinear transformation - stability analysis after bilinear transformation - Routh-Hurwitz techniques -
Module IV (12 hours)
State Space Analysis: Introduction- Definitions and explanations of the terms] STATE, STATE VARIABLES, STATE VECTOR and STATE SPACE-State Space Representations of Linear Time-invariant System with i) single input and output ii) multi variable systems iii) SISO System in which forcing function involves derivative terms also - Non uniqueness of a set of state variables - Eigen values - Phase variable and Diagonal forms - Invariance of Eigen values under linear transformation - Diagonalisation.
Solutions of Linear Time-invariant State Equations- Homogeneous and Non-homogeneous case (examples up to second order only) - Matrix Exponential-Laplace Transform approach to the solution of state equations-State Transition Matrix-properties.
State Space representation of Discrete Time Systems
Relation between Transfer function / Transfer Matrix and State Space models' for continuous and discrete cases.

Text Book:
1. Ogata K., "Modern Control Engineering", Prentice Hall India
2. B.C Kuo., "Automatic Control System", Prentice Hall India

Reference Books
3. Ogata K., "Discrete Time Control Systems", Pearson Education Asia

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks -50.

University examination Pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII- 2 questions A and B of 15 marks from module I with choice to answer anyone.
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV- 2 questions A and B of 15 marks from module III with choice to answer anyone.
QV - 2 questions A and B of 15 marks from module IV with choice to answer anyone.
EC04 - 604: DIGITAL COMMUNICATION

3 hours lecture and 1 hour tutorial per week

Objectives:
To study the theoretical aspects of analyzing digital communication systems with different modulation schemes.

Module I (13 hours)
Analog pulse modulation - sampling theorem for bandpass signals - pulse amplitude modulation - generation and demodulation - PAM/TDM system - PPM generation and demodulation - PWM - spectra of pulse modulated signals - SNR calculations for pulse modulation systems - waveform coding - quantization - PCM - DPCM - delta modulation - adaptive delta modulation - line coding schemes - ON-OFF, NRZ, Bipolar - Manchester signaling and differential encoding

Module II (13 hours)
Shaping - Nyquist criterion for zero ISI - signalling with duobinary pulses - eye diagram - equalizer, scrambling and descrambling - signal space concepts - geometric structure of the signal space - \(L^2 \) space - distance, norm and inner product - orthogonality - gram-base band data, transmission - matched filter receiver - inter symbol interference - Gram - Schmidt orthogonalization procedure

Module III (13 hours)
Review of Gaussian random process - optimum threshold detection - optimum receiver for AWGN channel - matched filter and correlation receivers - decision procedure - maximum a-posteriori probability detector - maximum likelihood detector - probability of error - bit error rate - optimum receiver for coloured noise - carrier and symbol synchronization

Module IV (13 hours)
Digital modulation schemes - coherent binary schemes - ASK, FSK, PSK, MSK coherent M-ary schemes - calculation of average probability of error for different modulation schemes - power spectra of digitally modulated signals - performance comparison of different digital modulation schemes

Text books
1. Simon Haykin, Communication Systems, John Wiley
2. Lathi B.P., Modern Digital and Analog Communication, Oxford University Press
3. Sklar, Digital Communication, Pearson Education

References books
1. Sam Shanmugham K., Digital and Analog Communication Systems, John Wiley
Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer anyone.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer anyone.
QV - 2 questions A and B of 15 marks from module IV with choice to answer anyone.
Objectives:
This paper introduces the basic components and systems used in power electronics. Students should be able to design and analyze typical power electronics systems.

Module I (13 hours)
Power diodes - basic structure and V-I characteristics - various types - power transistors - BJT, MOSFET and IGBT - basic structure and V-I characteristics -thyristors - basic structure - static and dynamic characteristics - device specifications and ratings - methods of turning on - gate triggering circuit using UJT - methods of turning off - commutation circuits - TRIAC

Module II (13 hours)
Line frequency phase controlled rectifiers using SCR - single phase rectifier with R and RL loads - half controlled and fully controlled converters with continuous and constant currents - SCR inverters - circuits for single phase inverters - series, parallel and bridge inverters - pulse width modulated inverters - basic circuit operation

Module III (13 hours)
AC regulators - single phase ac regulator with R and RL loads - sequence control of ac regulators - cycloconverter - basic principle of operation - single phase to single phase cycloconverter - choppers - principle of operation - step-up and step-down choppers - speed control of DC motors and induction motors

Module IV (13 hours)
Switching regulators - buck regulators - boost regulators - buck-boost regulators cuk regulators - switched mode power supply - principle of operation and analysis - comparison with linear power supply - uninterruptible power supply - basic circuit operation - different configurations - characteristics and applications.

Text
1. Ned Mohan et. al., *Power Electronics*, John Wiiey

References

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks =50.

University examination Pattern
QI - 8 short type questions of 5 marks, 2 from each module
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 - 606: RADIATION AND PROPAGATION
3 hours lecture and 1 hour tutorial per week

Objectives:
This paper provides the basic ideas on radiating structures, their arrays and designs, and different wave propagation modes.

Module I: Antenna fundamentals (13 hours)
Source of radiation - radiation from accelerated charges - oscillating electric dipole - power radiated by a current element - radiation from a half wave dipole - antenna field zones (analysis) - antenna parameters - patterns - beam area - radiation intensity - beam efficiency - directivity - gain - effective aperture - effective height - self impedance - mutual impedance - antenna theorems - reciprocity theorem - Babinet's principle

Module II: Antenna arrays (13 hours)
Linear antenna arrays - two element array of isotropic point sources - amplitude and phase characteristics - pattern multiplication - N-element array - analysis and design of broad - side array - end-fire array - binomial array and Dolph-Tchebyscheff array

Module III: Special antennas (13 hours)
Travelling wave antenna - long wire - V and rhombic antennas - broad band dipole - folded dipole antenna - broad band antennas - Yagi-Uda antenna and horn antenna - reflector antenna - parabolic reflector antenna - cassegrain antenna - frequency independent antenna - log periodic antenna microstrip antenna

Module IV: Radio wave propagation (13 hours)
Ground wave propagation - reflection from earth - space wave - surface wave - spherical earth propagation - tropospheric waves - ionospheric propagation - ionosphere - plasma oscillations - wave propagation in plasma - reflection and refraction of waves by the ionosphere - critical frequency - virtual height

Text books

Reference books
1. Kraus J.D., Antenna Theory, McGraw Hill
4. Ramo & Whinnery, Fields & Waves in Communication Electronics, John Wiily

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q I - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer anyone.
EC04 - 607(P): MICROPROCESSOR & MICROCONTROLLER LAB

Objective:

To acquaint the students with the following skills:
- Assembly Language programming & Interfacing based on 8085 / 8086 Microprocessors and 8051 Microcontroller.

List of experiments

1. 8086 kit familiarization and basic experiments
2. Programming exercise using BCD and Hexadecimal numbers
3. Programming exercise: sorting, searching and string
4. Interfacing with A/D and D/A converters
5. Interfacing with stepper motors
6. IBM PC programming: Basic programs using DOS and BIOS interrupts
7. Interfacing with PC: Serial communication and Parallel printer interfacing

Interfacing experiments using 8051

8. Parallel interfacing I/O ports (Matrix keyboard)
9. Serial communication with PC
10. Parallel Interfacing - LCD
11. Interfacing with serial EEPROM

Internal work assessment
60%-Laboratory practical and record
30%- Test/s
10%- Other measures like regularity and participation in class
Total Marks = 50
EC04 - 608(F): MINI PROJECT
3 hours practical per week

Objective:
To improve the professional competency of the students and estimate their ability to transform theoretical knowledge acquired so far into a working model which would help them to solve real life problems related to industry and research.

Each group consisting of four members is expected to design and develop a moderately complex hardware system. A working model of the hardware system should be fabricated and tested.

The guide will monitor the project work and evaluation will be done by him accordingly.

The assessment of all mini-projects will be done by a committee consisting of HOD, Mini-project Co-ordinator and two faculty members, specialized in various fields of Electronics and Communication Engineering. The students will present and demonstrate the project work before the committee.

Sixty Percent of total marks will be awarded by the guide and the remaining forty percent will be awarded by the evaluation committee.

A detailed report certified by the guide and Head of the department is to be submitted.

Sessional work Assessment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design and development</td>
<td>15</td>
</tr>
<tr>
<td>Regularity and Participation</td>
<td>05</td>
</tr>
<tr>
<td>Report</td>
<td>10</td>
</tr>
<tr>
<td>Demonstration</td>
<td>20</td>
</tr>
<tr>
<td>(to be awarded by the Evaluation Committee)</td>
<td></td>
</tr>
<tr>
<td>TOTAL MARKS</td>
<td>50</td>
</tr>
</tbody>
</table>
Objectives: This paper provides basic concepts of Information theory, which is the fundamental for electronic communications. The student should be able to propose, design and analyse suitable coding/decoding scheme for a particular digital communication application.

Module I (13 hours)
Information theory - information and entropy - properties of entropy of a binary memoryless source - extension of a binary memoryless source - source coding theorem - Shannon fano coding - Huffman coding - Lempel ziv coding - discrete memoryless source - binary symmetric channel - mutual information - properties - channel capacity - channel coding theorem

Module II (13 hours)
Coding - linear block codes - generator matrices - parity check matrices - encoder - syndrome and error correction - minimum distance - error correction and error detection capabilities - cyclic codes - coding and decoding

Module III (13 hours)
Introduction to algebra - groups - fields - binary field arithmetic - construction of Galois field - basic properties - computations - vector spaces - matrices - BCH codes - description - decoding - reed solomon codes

Module IV (13 hours)

Text books
1. Simon Haykins, Communication Systems, John Wiley

Reference books
1. Das J., Malik A.K., Chatterjee P.K., Principles of Digital Communications, New Age International
2. Simon Haykin, Digital Communications, John Wiley
5. Sklon, Digital Communication, Pearson Education
6. Couch, Digital and Analog Communication System, Pearson Education
Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q I - 8 Short type questions of 5 marks, 2 from each module.
Q II - 2 questions A and B of 15 marks from module I with choice to answer any one.
Q III - 2 questions A and B of 15 marks from module II with choice to answer anyone.
Q IV - 2 questions A and B of 15 marks from module III with choice to answer any one.
Q V - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 - 702: MICROWAVE DEVICES AND COMMUNICATION

Objectives: With this paper, student should be able to understand the working principle and use of various microwave components and semiconductor devices. This paper also provides the basic aspects of terrestrial and satellite microwave communication links.

Module I (13 hours)
Theory of waveguide transmission - rectangular waveguides - TE modes - TM modes - waveguide components - rectangular cavity resonator - circular cavity resonator (only basic ideas) - E-plane tee - magic tee - isolator - circulator - directional coupler - S matrix

Module II (13 hours)
Microwave linear beam tubes - klystron (bunching, output power and loading) - reflex klystron - traveling wave tube (amplification process, convection current, axial electric field, gain) - microwave crossed field tubes - magnetron (operation, characteristics and applications)

Module III (13 hours)
Semiconductor microwaves devices - microwave transistors - tunnel diodes and FETs - transferred electron devices - Gunn effect diodes - (Gunn effect, operation, modes of operation, microwave generation and amplification) - LSA diodes - InP diodes - Cd Te diodes - avalanche transit time devices - read diodes - impatt diodes - trapatt diodes - baritt diodes

Module IV (13 hours)
Terrestrial microwave communication - basic principles of microwave links - link analysis - microwave relay systems - choice of frequency - line of sight and over the horizon systems - modulation methods - block schematic of terminal transmitters and receivers - effect of polarization - diversity receivers - digital microwave links - digital modulation schemes - fading - digital link design - satellite communication - orbit of communication satellites - angle of elevation - propagation delay - orbital spacing - satellite construction - transponders - antennas - multiple spot beams - earth station - link analysis - multiple access schemes - digital satellite links

Text books
1. Liao S. Y., "Microwave devices and Circuits", Prentice Hall of India
2. Gagliardi R.M., Satellite Communication, CBS Publishers

Reference books
1. Rizzi P.A., "Microwave Engineering, Passive Circuits Hall of India
3. Kamilo Feher, Digital Communications, Microwaves applications, PHI
4. Chatterji R., Microwave Engineering, Special topics, East West Press

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks =50.

University examination Pattern
Q I - 8 short type questions of 5 marks, 2 from each module.
Q II - 2 questions A and B of 15 marks from module 1 with choice to answer any one.
Q III-2 questions A and B of 15 marks from module II with choice to answer anyone.
Q IV- 2 questions A and B of 15 marks from module III with choice to answer anyone.
Q V - 2 questions A and B of 15 marks from module IV with choice to answer anyone.
EC04 - 703: OPTICAL COMMUNICATION SYSTEMS
3 hours lecture and 1 hour tutorial per week

Objectives: This paper provides the basic theory of optical fibers and principle of various components in optical communication system. Student should be able to design the components with specifications for a given fiber optic communication system.

Module I (13 hours)
Solution to Maxwell's equation in a circularly symmetric step index optical fiber - linearly polarized modes - single mode and multimode fibers - concept of V number - graded index fibers - total number of guided modes (no derivation) - polarization maintaining fibers - attenuation mechanisms in fibers - dispersion in single mode and multimode fibers - dispersion shifted and dispersion flattened fibers - attenuation and dispersion limits in fibers - nonlinear self phase modulation effect in single mode fibers

Module 11 (13 hours)
Optical sources - LED and laser diode - principles of operation - concepts of line width - phase noise - switching and modulation characteristics - typical LED and LD structures - optical detectors - pn detector - pin detector - avalanche photodiode - principles of operation - concepts of responsivity - sensitivity and quantum efficiency - noise in detection - typical receiver configurations (high impedance and transimpedance receivers)

Module III (13 hours)
Intensity modulated direct detection systems - quantum limit to receiver sensitivity - detected signal & shot noise - ISI and equalization - coherent systems - homodyne and heterodyne systems - system structures - coherent systems using PSK, FSK, ASK and DPSK modulations - related noise effects - performance degradation induced by laser phase and intensity noise - degradation due to fiber dispersion - degradation induced by nonlinear effects in fiber propagation

Module IV (13 hours)
Optical amplifiers - semiconductor amplifier - rare earth doped fiber amplifier (with special reference to erbium doped fibers) - Raman amplifier - Brillouin amplifier - principles of operation - amplifier noise - signal to noise ratio - gain - gain bandwidth - gain and noise dependencies - intermodulation effects - saturation induced crosstalk - wavelength range of operation

Reference books
2. John Senior, *Optical Fiber Communications*, PHI
4. Gerd Kaiser 'Optical Fiber communications',

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks =50.
University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 - 704: COMPUTER COMMUNICATION & NETWORKING
3 Hours lecture and 1 hour tutorial per week

Objectives: This paper should provide a good background in queueing theory and characteristics of important computer networks and protocols.

Module I (13 hours)
Characteristics of communication networks - traffic characterization and quality of service CBR, VBR, UBR traffic - network services - flow control - congestion control - error control - error detection - ARQ retransmission strategies – analysis - OSI model - Ethernet - token ring - FDDI - DQDB - frame relay - IPV4, IPV6

Module II (13 hours)

Module III (13 hours)
Introduction to queueing theory - Markov chain - discrete time and continuous time Markov chains - poisson process - queueing models for datagram networks - Little's theorem - M/M/l queueing system - M/M/m/m queueing models -infinite server case - M/G/l queue - mean value analysis

Module IV (13 hours)
ATM networks - main features - statistical multiplexing - addressing, signaling and routing - ATM header structure - ATM adaptation layer - IP over ATM

Text books
2. Bertsekas D. & Gallager R., "Data Networks", Prentice Hall of India

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer anyone.
QIV - 2 questions A and B of 15 marks module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
(i) To make awareness about the different stages in the software development process, quality management, software metrics, cost estimation and CASE tools.

(ii) To understand the full features of object-oriented design starting from specifications, based on a typical case study.

After studying this paper the students should have known most of the tips in managing the software development process.

Module I (13 hours)
Introduction - FAQs about software engineering - professional and ethical responsibility - system modeling - system engineering process - the software process - life cycle models - iteration - specification - design and implementation - validation - evolution - automated process support - software requirements - functional and non-functional requirements - user requirements - system requirements - SRS - requirements engineering processes - feasibility studies - elicitation and analysis - validation - management - system models – context models - behavior models -.data models - object models - CASE workbenches

Module II (13 hours)
Software prototyping - prototyping in the software process - rapid prototyping techniques - formal specification - formal specification in the software process - interface specification - behavior specification - architectural design – system structuring - control models - modular decomposition - domain-specific architectures - distributed systems architecture - object-oriented design – objects and classes - an object oriented design process case study - design evolution - real-time software design - system design - real time executives - design with reuse - component-based development - application families - design patterns - user interface design - design principles - user interaction – information presentation - user support - interface evaluation.

Module III (13 hours)
Dependability - critical systems - availability and reliability - safety - security -critical systems specifications - critical system development - verification and validation - planning - software inspection - automated static analysis - clean room software development - software testing - defect testing - integration testing - object-oriented testing - testing workbenches - critical system validation - software evolution - legacy systems - software change - software maintenance - architectural evolution - software re-engineering - data re-engineering

Module IV (13 hours)
Text book
1. Ian Sommerville, *Software Engineering*, Pearson Education Asia

Reference books

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q 1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer anyone.
QIV - 2 questions A and B of 15 marks module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
To make the students aware of digital image model, different types of image processing requirements and use of various mathematical transforms for such processing.

Module I (13 hours)
Basic ideas in digital image processing - problems and applications - image representation and modeling - two dimensional systems - shift in variant linear systems - two dimensional Fourier transform and its properties - optical theory and modulation transfer functions - matrix theory - block matrices and Kronecker products - random fields - spectral density function

Module II (13 hours)
Image perception - light, luminance, brightness and contrast - MTF of the visual system - visibility function - monochrome vision models - image fidelity criteria - colour representation - colour matching and reproduction - colour co-ordinate systems - colour difference measures - colour vision models - temporal properties of vision - image sampling and quantization - image scanning - display and recording - two dimensional sampling - practical limitations - image quantization basic ideas

Module III (13 hours)
Unitary image transforms - basic ideas - two dimensional DFT - cosine transform - sine transforms - hardamard transform - harr transform - slant transform - KL transform - SVD transform - image enhancement - point operations - histogram equalization and modification - spatial operations - transforms operations - multispectral image enhancement - colour image enhancement

Module IV (13 hours)
Image restoration - image observation models - inverse filtering - wiener filtering Image compression - pixel coding - predictive coding - transform coding - basic ideas

Text books

Reference books

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.
University examination Pattern
Q 1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer anyone.
QIV - 2 questions A and B of 15 marks module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objective:
To Create general awareness and exposure of management principles relevant for industrial sector.

Module I (12 Hours)
Information systems- Functions of management- Levels of management- Frame work for information systems- Systems approach- Systems concept- Systems and their environment- Effects of system approach in information system design- Using systems approach in problem solving- Strategic uses of information.

Module II (10 Hours)
An overview of computer hardware and software components- File and database management systems- Introduction to network components- Topologies and types- remote access- The reasons for managers to implement networks- Distributed systems- The internet and office communications.

Module III (14 Hours)
Application of information systems to functional- Tactical and strategic areas of management, decision support systems and expert systems.

Module IV (16 Hours)
Information systems planning- Critical success factor- Business system planning- Ends/means analysis- Organizing the information system plan- Systems analysis and design- Alternative application development approaches- organization of data processing- Security and ethical issues of information systems.

Text Books

Reference Books.

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q 1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer anyone.
QIV - 2 questions A and B of 15 marks module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
With this paper, the students should have thoroughly known about the principle of earth station, satellite link, communication satellites, satellite orbits and different types of channel accessing mechanisms.

Module I (13 hours)
Satellite orbits - solar day and sidereal day - orbital parameters - satellite trajectory - period, velocity and position of a satellite - geostationary satellites - non-geostationary constellations - launching of geostationary satellites – Hohmann transfer - effect of earth's shape - other heavenly bodies - atmospheric drag and radiation pressure on the satellite's orbit

Module II (13 hours)
Communication satellites - spacecraft subsystems - payload - repeater, antenna, attitude and control systems - telemetry, tracking and command - power sub system and thermal control
Earth stations - antenna and feed systems - satellite tracking system – amplifiers - fixed and mobile satellite service earth stations.

Module III (13 hours)
Communication link design - frequency bands used - antenna parameters - transmission equations - noise considerations - link design - very small aperture terminals (VSAT) - VSAT design issues.

Module IV (13 hours)
Multiple access techniques - frequency division multiple access - time division multiple access - code division multiple access - access protocols for data traffic.

Reference books
2. Gagliardi R.M., Satellite Communication, CBS
3. Ha T.T., Digital Satellite Communication, MGH

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10%- Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
QI - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module 1 with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives: After studying this paper students should be aware of design and simulation of logic gates belonging to different types of CMOS logic families.

Module I (11 hours)
Short and narrow channel effects in MOS transistor (MOST) – subthreshold current - channel length modulation - drain induced barrier lowering - hot electron effects - velocity saturation of charge carriers
Scaling of MOST - constant voltage and constant field scaling - digital MOSFET model - series connection of MOSFETs

Module II (15 hours)
MOS inverters - resistive load - NMOS load - pseudo NMOS and CMOS inverters - calculation of input high and low and output high and low levels -power dissipation - calculation of delay times for CMOS inverter - CMOS ring oscillator - design of super buffer - estimation of interconnect parasitics and calculation of interconnect delay

Module III (13 hours)
MOS logic circuits - CMOS NOR, NAND, AOI and OAI gates - full adder - SR and JK latches - CMOS latch - transmission gates - simple circuits using TG -basic principles of pass transistor logic - voltage boot strapping - BiCMOS logic circuits - BiCMOS inverter with resistive base pull down and active base pull down - BiCMOS switching transients - simple gates using BiCMOS.

Module IV (13 hours)
Dynamic CMOS logic - precharge/evaluate logic - cascading problem – domino logic - cascading domino logic gates - charge sharing in domino logic – solutions to charge sharing problem - realisation of simple functions using domino logic - NORA logic - true single phase clock dynamic logic - basic ideas of adiabatic logic.

Reference books

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
After studying this paper the student should be able to obtain the numerical solutions of:
(i) transcendental equations
(ii) linear algebraic equations
(iii) ordinary and partial differential equations.

Module I: Errors in numerical calculations (13 hours)
Sources of errors, significant digits and numerical instability - numerical solution of polynomial and transcendental equations - bisection method - method of false position - Newton-Raphson method - fixed-point iteration - rate of convergence of these methods - iteration based on second degree equation - the Muller's method - Chebyshev method - Graeffe's root squaring method for polynomial equations - Bairstow's method for quadratic factors in the case of polynomial equations

Module II: Solutions of system of linear algebraic equations (13 hours)
Direct methods - gauss and gauss-Jordan methods - Crout's reduction method - error analysis - iterative methods - Jacobi's iteration - Gauss-Seidel iteration - the relaxation method - convergence analysis - solution of system of nonlinear equations by Newton-Raphson method - power method for the determination of eigen values - convergence of power method

Module III: Polynomial interpolation (13 hours)
Lagrange's interpolation polynomial - divided differences - Newton's divided difference interpolation polynomial - error of interpolation - finite difference operators - Gregory-Newton forward and backward interpolations - Stirling's interpolation formula - interpolation with a cubic spline - numerical differentiation - differential formulas - in the case of equally spaced points - numerical integration - trapezoidal and Simpson's rules - Gaussian integration - errors of integration formulas

Module IV: Numerical solution of ordinary differential equations (13 hours)
The Taylor series method - Euler and modified Euler methods - Runge-Kutta methods (2nd order and 4th order only) - multistep methods - Milne's predictor-corrector formulas - adam-bashforth & adam-moulton formulas - solution of boundary value problems in ordinary differential equations - finite difference methods for solving two dimensional Laplace's equation for a rectangular region - finite difference method of solving heat equation and wave equation with given initial and boundary conditions.

Reference books
Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 - 706(P) : DIGITAL COMMUNICATION LAB

(3 hours practicals per week)

Objective:

The aim is to give exposure to different communication circuits.

1. Sampling and reconstruction of low pass signals
2. PCM generation
3. Differential PCM generation
4. Implementation of Delta modulator and demodulator
5. Implementation of line coding schemes: bipolar, Manchester and differential codes
6. Equalization and Digital Regeneration
7. Matched filter receiver for rectangular pulse
8. Generation and detection of BASK and BFSK signals
9. Generation and detection of BPSK signals
10. Generation and detection of QAM using IC multipliers
11. Implementation of Analog to Digital Converters.
12. Implementation of Digital to Analog Converters

Internal work assessment
60% - Laboratory practical and record
30% - Test/s
10% - Other measures like regularity and participation in class
Total Marks = 50
Objective:
To assess the debating capability of the student to present a seminar on a technical topic. Also to train a student to face the audience and freely present his ideas without fear thus creating in him self-confidence and courage that are essential for an Engineer.

Each student is expected to give a seminar on a topic of current relevance in Electronics and Communication Engineering. Interdisciplinary topics from related fields viz Electrical, Computer science, Electronic Instrumentation and Bio-medical Engineering are also permitted. Topic that must be selected from standard journals or publications of IEEE or any other professional societies of ECE interest, are to be indicated in the final report.

The seminar report should not be a reproduction of the original paper.

Internal work Assessment:
Qualify of the Topic and preparation of the manuscript 5 Marks
Presentation 25 Marks
Discussion (with audience) 5 Marks
Final Report 10 Marks
Participation (including regularity) 5 Marks
TOTAL 50 Marks
Objective:
To develop an ability in an Engineering student to convert his/her theoretical knowledge into practical systems and also to assess his inherent capabilities and talents in the above task.

The Project work is for a duration of two semesters. Each student group consisting of not more than five members is expected to design and develop a complete system, which may be either software / Hardware or a combination of both. The project work may be undertaken in Electronics / Communication/Computerscience or any allied area.

Literature survey, design of the project and 25% of the implementation of the project are to be completed in the seventh semester. An Evaluation Committee consisting of the guide, Project co-ordinator and three faculty members of the department and HOD will perform the assessment of the projects. Members of the group will present / demonstrate the project details and progress of the project before the committee at the end of the seventh semester. An interim report is to be submitted.

Internal work assessment

1	Technical relevance of project, literature Survey and preliminary works	10 Marks
2	Progress of the project	15 Marks
3	Regularity and Participation	5 Marks
4	Presentation /demonstration before committee Interim report	15 Marks
		5 marks'

TOTAL 50 Marks
EIGHTH SEMESTER

EC04 - 801: MICROELECTRONIC TECHNOLOGY

3 hours lecture and 1 hour tutorial per week

Objectives: To introduce the students about the various steps in the IC fabrication process starting from raw silicon. With this paper, students should be aware of the physical principles of IC technology process.

Module I (13 hours)
Wafer processing - diffusion - Fick's law - analytic solutions for predeposition and drive-in diffusion - oxidation - deal-grove model - ion implantation - vertical and lateral projected ranges - channeling - stopping power - optical lithography –optical exposures - modulation transfer function - proximity and projection printing - photoresists - types - contrast curves - etching - wet, plasma and ion etching - epitaxial growth - MOCVD and molecular beam epitaxy

Module II (13 hours)
Device isolation - contacts and metallization - junction and oxide isolation - LOCOS - SILO - SWAMI process - trench isolation - silicon on insulator isolation - schottky contacts - implanted ohmic contacts - alloyed contacts – refractory metal contact technology - multi level metallization.

Module III (13 hours)
CMOS and bipolar technologies - early bipolar process - advanced bipolar processes - CMOS process - p well process - twin tub process - hot carrier effects in BJT and CMOS - BiCMOS fabrication process sequence

Module IV (13 hours)
VLSI design fundamentals - layout and design rules for well, pads, metal layers, poly 1, poly 2 - layout using cell hierarchy - layout of MOSFET - layout of the inverter - NOR and NAND gates - layout of junction isolated BJT

Text books
3. Pucknell D.A. & Kamran Eshragian, 'Basic VLSI Design', PHI

Reference books
1. Sze S.M., 'VLSI Technology', MGH
2. Chang C.Y., & Sze S.M.,' VLSI Technology', MGH
3. Ruska W.S., "Microelectronic Processing", MGH
Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks -50.

University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
This paper is to provide a strong background in imparting knowledge about the existing GSM and CDMA mobile communication technology.

Module I (12 hours)
Mobile radio propagation - free space propagation model - ground reflection model - large scale path loss - small scale fading and multipath propagation - impulse response model of a multipath channel - parameters of a mobile multipath channel - multipath delay spread - doppler spread - coherence band width - coherence time - time dispersion and frequency selective fading - frequency dispersion and time selective fading - concepts of level crossing rate and average fade duration

Module II (14 hours)
Digital communication through fading multipath channels - frequency non selective, slowly fading channels - frequency selective, slowly fading channels - calculation of error probabilities - tapped delay line model - the RAKE demodulator performance - diversity techniques for mobile wireless radio systems - concept of diversity branch and signal paths - combining methods - selective diversity combining - pre-detection and post detection combining - switched combining - maximal ratio combining - equal gain combining

Module III (12 hours)
Cellular concept - frequency reuse - cochannel interference - adjacent channel interference - power control for reducing interference - improving capacity in cellular systems - cell splitting - sectoring - hand off strategies - channel assignment strategies - call blocking in cellular networks

Module IV (14 hours)
Fundamental concepts of spread spectrum systems - pseudo noise sequence - performance of direct sequence spread spectrum systems - analysis of direct sequence spread spectrum systems - the processing gain and anti jamming margin - frequency hopped spread spectrum systems - time hopped spread spectrum systems - synchronization of spread spectrum systems

Text books
1. Kamilo Feher, 'Wireless Digital Communications', PHI
3. Lee W.C.Y., 'Mobile Cellular Telecommunication', MGH
4. Proakis J.G., 'Digital Communications', MGH

Internal work assessment
- 60% - Test Papers (Minimum 2)
- 30% - Assignments/Term Project/ any other mode decided by the teacher.
- 10% - Other measures like regularity and participation in class.
- Total marks =50.

University examination Pattern
- QI - 8 short type questions of 5 marks, 2 from each module.
- QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
- QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
- QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
- QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
With this paper students should be able to analyze the characteristics of a typical digital switching network.

Module I (13 hours)
Electronic switching systems: basics of a switching system - electronic space division switching - stored program control - time division switching - time multiplexed space switching - time multiplexed time switching - two-stage network - three-stage network - n-stage network - two stage, three stage and N-stage combination switching.

Module II (13 hours)

Module III (13 hours)
Elements of traffic engineering: network traffic load and parameters - grade of service and blocking probability - incoming traffic and service time characterization - blocking models and loss estimates - delay systems

Module IV (13 hours)
Signaling: customer line signaling - outband signaling - inband signaling - PCM signaling - inter register signaling - common channel signaling principles - CCITT signaling system No: 7 - digital customer line signaling
Introduction to ATM switching - Strict sense non block switch - self routing switches - Bense network-ATM routers - Design of typical switches.

Text books

Reference books

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer anyone.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives: This paper introduces the student with the knowledge about the architecture, interfacing and programming with TMS320C6X. Students should be able to design and develop TMS320C6X based system (both hardware and software) for a particular DSP application.

Module-1

Module-2
Fixed and floating point formats-code improvement-constraints-TMS 320C64x CPU-simple programming examples using C/assembly.

Module-3
Review of FIR, IIR filters-DFT and FFT. Adaptive filters-examples for noise cancellation and system examples-code optimization-procedure-software pipelining

Module 4
Typical DSP development systems-support tools and files- compilers-assemblers-code compressors-studio-codecs-DSP application examples in codec, voice scrambling, PLL, AI, image processing, FSK modems, voice detection and reverse playback, multi rate filters, PID controllers.

Text Books
Rulph Chassaing DSP applications using C and the TMS 320C6x DSK, Wiley 2002

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.(One assignment may be a practical DSP implementation with TMS320C6X).
10% - Other measures like regularity and participation in class.
Total marks =50.

University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII- 2 questions A and B of 15 marks from module I with choice to answer anyone.
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objective:
To give General awareness on the Human and Industrial Phsycology

Module I (13 hours)
Introduction - psychology as a science - areas of applications - study of individual - individual
differences - study of behavior - stimulus - response behavior - heredity and environment -
human mind - cognition - character -thinking - attention - memory - emotion - traits - attitude -
personality

Module II (13 hours)
Organizational behavior -definition - development - fundamental concept -nature of people -
nature of organization - an organizational behavior system -models - autocratic model - hybrid
model - understanding a social - system social culture - managing communication - downward,
upward and other forms of communication

Module III (13 hours)
Motivation - motivation driver - human needs - behavior modification - goal setting -
expectancy model - comparison models - interpreting motivational models - leadership - path
goal model - style - contingency approach

Module IV (13 hours)
Special topics in industrial psychology - managing group in organization -group and inter group
dynamics -managing change and organizational development - nature planned change -
resistance - characteristic of OD - OD process.

Reference books
 John Willy
 McGraw Hill
5. Blum M.L. & Naylor J.C., Horper & Row, "Industrial Psychology", CBS Publisher

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q I - 8 Short type questions of 5 marks, 2 from each module.
Q II - 2 questions A and B of 15 marks from module I with choice to answer any one.
Q III - 2 questions A and B of 15 marks from module II with choice to answer any one.
Q IV - 2 questions A and B of 15 marks from module III with choice to answer anyone.
Q V - 2 questions A and B of 15 marks from module IV with choice to answer anyone.
EC04 - 804(C): ANALOG MOS CIRCUITS

3 hours lecture and 1 hour tutorial per week

Objectives:
This paper enables the student to have ideas about chip level analysis and modeling of MOS transistor amplifier circuits. This knowledge will be useful in mixed signal circuit design.

Module I (11 hours)
Analog MOS models - low frequency model - MOS in saturation - high frequency model - variation of transconductance with frequency - temperature effects in MOST - noise in MOST (shot, flicker and thermal noise) - MOS resistors and resistor circuits - super MOST

Module II (14 hours)
Current sources and sinks - current mirror - cascode current source - transient response of simple current mirror - Wilson current mirror - regulated cascode current source/sink - voltage references - resistor MOSFET and MOSFET only voltage references - band gap references - various biasing schemes for voltage references

Module III (12 hours)
Common source - common gate and source follower amplifiers - class AB amplifier - active load configuration - transimpedance amplifier - cascode amplifier - push pull amplifier - amplifier based signal processing - the differential difference amplifier (DDA) - adder, multiplier, divider and filters using DDA

Module IV (15 hours)
Mixed signal circuits - CMOS comparator design - pre amplification - decision and post amplification stages - transient response - clocked comparators -analog multiplier - the multiplying quad - level shifting in multipliers - dynamic analog circuits - charge injection and capacitive feed through in MOS switch -sample and hold circuits -switched capacitor filters -switched capacitor implementation of ladder filters.

Reference books
2. Mohammed Ismail & Terri Fiez, Analog VLSI - Signal & Information Processing, MGH

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q I - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV- 2 questions A and B of 15 marks from module III with choice to answer anyone.
QV- 2 questions A and B of 15 marks from module IV with choice to answer anyone.
EC04 - 804(D): DIGITAL SYSTEM DESIGN

3 hours lecture and 1 hour tutorial per week

Objectives:
With this paper, the students should be able to design, simulate and implement a typical sequential digital system in FPGA/CPLD and propose proper testing strategy.

Module I (12 hours)
Review of logic design: logic design issues - hazards in combinational networks - hazards in sequential networks - synchronous design method - clock skew - asynchronous inputs - synchroniser failure and metastability

Module II (14 hours)
Hardware description languages: introduction to VHDL - behavioral modeling - transport Vs inertia! delay - simulation deltas - sequential processing – process statement - signal assignment - variable assignment – configurations - subprogram overloading - VHDL synthesis – design examples

Module III (13 hours)
Designing with programmable devices: programmable LSI techniques - programmable logic arrays - sequential PLDs - sequential circuit design using PLDs - complex programmable logic devices and filed programmable gate arrays - altera series FPGAs and Xilinx series FPGAs (typical internal structure)

Module IV (13 hours)
Design issues for testability: design for testability - bed of nails and in-circuit testing - scan methods - testing combinational circuits - testing sequential circuits - boundary scan - built-in self test - estimating system reliability - transmission line reflections and termination

Text books

Reference books
4. Bhasker 1, "A VHDL Primer", Addison Wesley
6. Palnikkar, Verilog HDC, Pearson Education

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
(One of the assignments may be the VHDL simulation of a typical digital system)
10% - Other measures like regularity and participation in class.
Total marks =50.
University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
To impart knowledge about the principle and working of different types of bio-medical electronic equipment/devices.

Module I (13 hours)
Electrical activity of excitable cells - SD curve - functional organization of the peripheral nervous system - electrocardiogram (in detail with all lead systems) - electroencephalogram - electro my ogram - electroneurogram - electrode - electrolyte interface - polarisation - polarizable and non polarisable electrodes - surface electrodes - needle electrodes - micro electrodes - practical hints for using electrodes - 'skin-electrode' equivalent circuit-characteristics of 'bio-amplifiers'.

Module II (13 hours)
Blood pressure - direct measurements - harmonic analysis of blood pressure waveform - systems for measuring venous pressure - heart sounds -phonocardiography - cardiac catheterisation - indirect blood pressure measurement - electromagnetic blood flow meters - ultrasonic blood flow meters -impedance plethysmography - photo plethysmography - 'indicator-dilution' method for blood flow determination - spirometry - measurement of various respiratory parameters - respiratory plethysmography - chamber plethysmography

Module III (13 hours)

Module IV (13 hours)
Physiological effects of electricity - important susceptibility parameters - macro shock hazards - micro shock hazards - protection against shock - electrical isolation - electrical safety analyzers - measurement of pH, pCO₂ and PO₂.

Text books
1. Webster J., Medical Instrumentation - Application and Design, John Wiley
2. Hand Book of Biomedical Instrumentation, TMH

Reference books
2. Encyclopedia of Medical Devices and Instrumentation Wiley

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks =50.

University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
After studying this paper, the student is expected to have a thorough knowledge in audio/video standards and different types of multimedia networks and technology.

Module-1

Module - 2

Module - 3
Speech coding standards-Audio coding standards-Still image compression standards-Multimedia conferencing standards. MPEG-1 and -2 compression-MPEG- 4 and -7

Module - 4

Text Book:

References:

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the-teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.
University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer anyone.
QIII - 2 questions A and B of 15 marks from module II with choice to answer anyone.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
To acquaint the students with important soft computing methodologies-neural networks, fuzzy logic, genetic algorithms and genetic programming.

Module I (13 hours)
Artificial intelligence systems- Neural networks, fuzzy logic, genetic algorithms. Artificial neural networks: Biological neural networks, model of an artificial neuron, Activation functions, architectures, characteristics-learning methods, brief history of ANN research-Early ANN architectures (brief study)-McCulloch & Pitts model, Perceptron, AD ALINE, MADALINE

Module II (13 hours)
Backpropagation networks: architecture, multilayer perceptron, back propagation learning-input layer, hidden layer, output layer computations, calculation of error, training of ANN, BP algorithm, momentum and learning rate, Selection of various parameters in BP networks. Variations in standard BP algorithms- Adaptive learning rate BP, resilient BP, Levenberg-Marquardt, and conjugate gradient BP algorithms (basic principle only)-Applications of ANN

Module III (13 hours)

Module IV (13 hours)
Genetic algorithms - basic concepts, encoding, fitness function, reproduction-Roulette wheel, Boltzmann, tournament, rank, and steady state selections, Elitism. Inheritance operators, Crossover-different types, Mutation, Bit-wise operators, Generational cycle, Convergence of GA, Applications of GA - case studies. Introduction to genetic programming-concepts.

Text Books

Reference Books
Yagnanarayana

Note: One assignment must be compulsorily based on simulation of artificial neural network, fuzzy logic systems, and genetic algorithm using computing software such as MATLAB. Another assignment may be solution of a practical problem using any of the soft computing techniques.
Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks =50.

University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
After studying this paper the student is expected to know about efficient algorithms/techniques for speech coding/compression, synthesis and recognition.

Module I (13 hours)

Module II (13 hours)
Spectral analysis of speech - short time fourier analysis - filter bank design - speech coding - subband coding of speech - transform coding - channel vocoder - formant vocoder - cepstral vocoder - vector quantizer coder

Module III (13 hours)
Speech synthesis - pitch extraction algorithms - Gold Rabiner pitch trackers - autocorrelation pitch trackers - voice/unvoiced detection - homomorphic speech processing - homomorphic systems for convolution - complex cepstnims - pitch extraction using homomorphic speech processing

Module IV (13 hours)
Automatic speech recognition systems - isolated word recognition - connected word recognition - large vocabulary word recognition systems - pattern classification - DTW, HMM - speaker recognition systems - speaker verification systems - speaker identification systems.

Text books

Reference books

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total Marks = 50.

University Examination Pattern
Q1 - 8 short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII - 2 questions A and B of 15 marks from module II with choice to answer anyone.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objective:
To give idea on Entrepreneur perspectives.

Module I (13 hours)
Entrepreneurial perspectives - understanding of entrepreneurship process - decision process - entrepreneurship and economic development - characteristics of entrepreneur - entrepreneurial competencies – managerial functions for enterprise

Module II (13 hours)

Module III (13 hours)
Process and strategies for starting a venture - stages of small business growth - entrepreneurship in international environment - entrepreneurship – achievement motivation - time management creativity and innovation structure of the enterprise - planning, implementation and growth

Module IV (13 hours)
Technology acquisition for small units - formalities to be completed for setting up a small scale unit - forms of organizations for small scale units - financing of project and working capital - venture capital and other equity assistance available - break even analysis and economic ratios technology transfer and business incubation

Reference books
5. Dr Patel V.G., Seven Business Crisis, Tata McGraw Hill

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 - 805(D): TELEVISION ENGINEERING AND RADAR SYSTEMS

<table>
<thead>
<tr>
<th>3 hours lecture and 1 hour tutorial per week</th>
</tr>
</thead>
</table>

Objectives:
After studying this paper, students are expected to understand the principles of different types of CTV and radar (both transmitter and receiver) and then uses. They should be aware of the existing standards.

Module I (13 hours)
Principles of television - image continuity - interlaced scanning - picture resolution - blanking - synchronizing - video and sound signal modulation - channel bandwidth - positive and negative modulation - vestigial sideband transmission - transmission efficiency - VSB signal reception - transmitter and receiver block diagrams - CCD camera

Module II (13 hours)
Colour TV - Colour perception - luminance, hue and saturation - colour TV camera and picture tube - colour signal transmission - bandwidth - modulation - formation of chrominance signal - principles of NTSC, PAL and SECAM coder and decoder

Module III (13 hours)
Digital TV - composite digital standards - 4f - NTSC standard - general specifications - sampling structure - general concept of video bit reduction - MPEG standard - digital transmission - cable TV - cable frequencies - coaxial cable for CATV - cable distribution system - cable decoders - wave traps and scrambling methods

Module IV (13 hours)
Radar systems - radar frequencies - radar equation - radar transmitter and receiver (block diagram approach) - continuous wave radar - frequency modulated CW radar - moving target indicator radar - tracking radar

Text books

Reference books
2. Damacher P., *Digital Broadcasting*, IEE Telecommunications Series

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks - 50.

University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 - 805(E): NANO TECHNOLOGY

3 hours lecture and 1 hour tutorial per week

Objectives: This is an introductory paper to the subject of nanotechnology. After studying this subject, the student should have a basic knowledge about nano/microdevices, mathematical modeling of electromechanical systems and applications.

Module - 1 (13 Hours)
Biological analogies of Nano and Micro-electromechanical systems (NMEMS) - Fabrication of MEMS- assembling and packaging- applications of NMEMS.

Module - 2 (13 Hours)
Mathematical models and design of NMEMS-NMEMS architecture-electro magnetics and its applications in NMEMS- Molecular and Nano structure dynamics-molecular wires and molecular circuits- thermo analysis and heat equation

Module – 3 (13 Hours)
Carbon nanotubes and nano devices-structural design of nano and MEM actuators and sensors-configurations and structural design of motion nano-and micro- structures.

Module - 4 (13 Hours)
Algebra of sets-direct current micro machines-mathematical models of induction motors-micro synchronous machines-single phase reluctance motors -stepper motors-synchronous reference frames- control of NMEMS

Text Book:

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.

University examination Pattern
Q1 - 8 Short type questions of 5 marks, 2 from each module.
QII- 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII- 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer any one
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
Objectives:
To make the student aware of the various protocols used in internet.

Module I (13 hours)
Computer networks and the internet - principles of application-layer protocols - HTTP - FTP - e-mail - DNS - socket programming with TCP/UDP - web servers - web pages design using HTML and XML.

Module II (13 hours)
Multimedia networking - applications - streaming stored audio and video - internet telephony - RTP - scheduling and policing mechanisms - integrated services - RSVP - differentiated services - network management - the internet network management framework.

Module III (13 hours)
Network security - E-mail security - privacy - S/MIME - IP security - overview - architecture - authentication - header and payload - combining security associations - key management - web security - SSL and transport layer security - SET - system security - intruders and viruses - firewalls - design - trusted systems.

Module IV (13 hours)

Text books
2. Stallings W., Cryptography and Network Security Principles and practice, Pearson Education Asia, Module III.
3. Schiller J., Mobile Communications, Addison Wesley, Module IV.

Reference books

Internal work assessment
60% - Test Papers (Minimum 2)
30% - Assignments/Term Project/ any other mode decided by the teacher.
10% - Other measures like regularity and participation in class.
Total marks = 50.
University examination Pattern
QI - 8 Short type questions of 5 marks, 2 from each module.
QII - 2 questions A and B of 15 marks from module I with choice to answer any one.
QIII - 2 questions A and B of 15 marks from module II with choice to answer any one.
QIV - 2 questions A and B of 15 marks from module III with choice to answer anyone.
QV - 2 questions A and B of 15 marks from module IV with choice to answer any one.
EC04 - 806(F): ADVANCED COMMUNICATION ENGINEERING LAB

3 hours lecture and 1 hour tutorial per week

Objective:
To make the students familiar with microwave devices, MATLAB, DSP kits, PSPICE

Microwave and optical experiments
1. Klystron characteristics o/p power & frequency versus repeller voltage
2. Slotted line measurements. VSWR & Impedance
3. Antenna radiation pattern measurements
4. Directional coupler and isolator
5. Optical fibre experiments. Analog & digital

Experiments using matlab/ DSP kit
6. IIR filter-low pass & high pass
7. FIR filter-low pass &high pass
8. MMSE Equalizer implementations

Experiments using Hardware/VHDL/Pspice
9. PN code generator
10. Cyclic encoder and decoder
11. Digital TDM circuit
12. Spreader and de-spreader circuits

Internal work assessment
60%-Laboratory practical and record
30%- Test/s
10% - Other measures like regularity and participation in class

Total Marks = 50
EC04 - 807(P): PROJECT WORK
7 hours project work per week

Objective:

To develop an ability in an Engineering student to convert his/her theoretical knowledge into practical systems and also to assess his inherent capabilities and talents in the above task.

This project work is the continuation of the 7th semester project - The student should complete the project work in this semester and present it before the Evaluation Committee - The Evaluation Committee as constituted in the 7th semester will assess the various projects, fix the relative grading and group average marks - The guide will award the marks for the individual student in a project, maintaining the group average.

Internal work Assessment

<table>
<thead>
<tr>
<th>Component</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design and Development</td>
<td>40</td>
</tr>
<tr>
<td>Regularity and participation</td>
<td>10</td>
</tr>
<tr>
<td>Presentation and Demonstration</td>
<td>30</td>
</tr>
<tr>
<td>Report</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
EC04 - 808(P): VIVA VOCE

Objective:
To examine the knowledge acquired by the students during B. Tech course through an oral examination.

There is only university examination for this - Examiners will be appointed by the university for conducting the viva voce - The viva voce exam will be based on the subjects studied for the B. Tech. course, mini project, project and seminar reports of the student. Each student has to submit the certified reports of Mini Project, Seminar and project (Interim & Main report) before the Examiners.

Internal work Assessment

<table>
<thead>
<tr>
<th>Subject</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>50 marks</td>
</tr>
<tr>
<td>Mini Project</td>
<td>10 marks</td>
</tr>
<tr>
<td>Seminar</td>
<td>10 marks</td>
</tr>
<tr>
<td>Project</td>
<td>30 marks</td>
</tr>
<tr>
<td>Total</td>
<td>100 marks</td>
</tr>
</tbody>
</table>

**