KERALA TECHNOLOGICAL UNIVERSITY

(THRISSUR CLUSTER - 07)

SCHEME AND SYLLABI

of

M. TECH.

in

POWER ELECTRONICS

OFFERING DEPARTMENT

ELECTRICAL & ELECTRONICS ENGINEERING

CLUSTER LEVEL GRADUATE PROGRAM COMMITTEE

1.	Dr Devdas Menon, Professor, IIT Madras, Chennai	Chairman
2	Principal, Government Engineering College Trichur, Thrissur	Convener
3	Principal, AXIS College of Engineering & Technology, East Kodaly, Murikkingal, Thrissur	Member
4	Principal, IES College of Engineering, Chittilappilly, Thrissur	Member
5	Principal, MET'S School of Engineering, Mala, Thrissur	Member
6	Principal, Royal College of Engineering & Technology, Akkikkavu, Thrissur	Member
7	Principal, Vidya Academy of Science & Technology, Thalakkottukara, Thrissur	Member
8	Principal, Thejus Engineering College, Vellarakkad, Erumappetty, Thrissur	Member
9	Principal, Universal Engineering College, Vallivattom, Konathakunnu, Thrissur	Member
10	Principal, Sahrdaya College of Engineering & Technology, Kodakara, Thrissur	Member

CERTIFICATE

This is to certify that

- 1. The scheme and syllabi are prepared in accordance with the regulation and guidelines issued by the KTU from time to time and also as per the decisions made in the CGPC meetings.
- 2. The suggestions/modifications suggested while presenting the scheme and syllabi before CGPC on 25.6.2015 have been incorporated.
- 3. There is no discrepancy among the soft copy in MS word format, PDF and hard copy of the syllabi submitted to the CGPC.
- 4. The document has been verified by all the constituent colleges.

Coordinator in charge of syllabus revision of the programme

Dr T N Padmanabhan Nambiar Sr Professor Vidya Academy of Science & Technology, Thalakkotkara

Principal of the lead college

Dr. Sudha Balagopal Principal Vidya Academy of Science & Technology, Thalakkotkara

Principals of the colleges in which the programme is offered

No	Name of the college	Principal's Name	Signature
1	Govt. Engineering College, Thrissur	Dr. Indira Devi	
2	Principal, Vidya Academy of Science & Technology, Thalakkotkara	Dr. Sudha Balagopal	
3			
4			
5			

Date: July, 2015 Place: Thrissur Dr. Devdas Menon, Professor, IIT Madras Chairman

VISION and MISSION of the Programme

VISION

Progress through Quality education in Electrical & Electronics Engineering and to emerge as a Centre of excellence in education and research for grooming the engineers as leaders of the society.

MISSION

- Provide our students strong theoretical knowledge, practical engineering skills and attitudes that will allow them to succeed as engineers and leaders.
- Create and maintain state-of-the art research environment, which provides its students and faculty with opportunities to create, interpret, apply and disseminate knowledge of electrical engineering.
- Prepare socially responsible graduates for life-long learning to meet intellectual, ethical and career challenges.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

There is a growing concern about the efficient use of depleting energy resources. Power Electronics encompasses many areas within Electrical Engineering. It plays an important role in processing and controlling the flow of electric energy efficiently and intelligently, by supplying voltage and current in forms that are optimally suited for user loads from a few watts to several megawatts. The application areas include heating and lighting control, ac and dc power supplies, motor control, HVDC power transmission, FACTS controllers, renewable energy integration, Power Quality improvement, Energy conservation, processes control and factory automation. The objective of the programme is to make the students aware of these issues and learn the theoretical aspects of power control, design fabricate and test power electronics systems for applications mentioned above. The objectives are met by offering a number of core courses supplemented by electives which the students can choose and culminating in project work. In addition program also has courses for generating research aptitude and improving communication skill.

PROGRAMME OUTCOMES (POs)

- A. Ability to apply knowledge of mathematics, science and engineering to conceptualize experiments, analyze data and utilize the same effectively in engineering practice.
- B. Acquire skills to use modern simulation tools and digital hardware technology for modelling and prototyping of complex power electronic systems.
- C. Enhance research capabilities and demonstrate problem identification, analysis and synthesis skills.
- D. Ability to demonstrate and design different types of converters and inverters.
- E. Study the application of power electronics systems to improve the performance of power system.
- F. Analyse, design and integrate various renewable sources to the power grid, to meet the energy demand.
- G. Demonstrate knowledge of project management principles as an individual or as a team to execute project/ develop prototype successfully with due consideration of economical and financial factors.
- H. Ability to comprehend and write report and documentation to make effective presentation both oral and written.
- I. Acquire professional ethical practices/ethics of research, integrity, professional code of conduct.
- J. Ability to engage in self-study and life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.

Scheme of M. Tech Programme in POWER ELECTRONICS

SEMESTER 1

Exam	Course Code	Course Title	Hou	rs/w	eek	TCA	ESE	Tatal	Crealita
Slot	Course Code	Course Thie	L	Т	Р	ICA	ESE	Total	Creatts
Α	07MA 6019	Applied Mathematics	3	1	0	40	60	100	4
В	07EE 6201	System Dynamics	3	1	0	40	60	100	4
С	07EE 6103	Analysis of Power Electronic Circuits I	3	1	0	40	60	100	4
D	07EE 6105	Electric Drives	3	0	0	40	60	100	3
Е	07EE 6xxx	Elective I	3	0	0	40	60	100	3
	07GN 6001	Research Methodology	0	2	0	100	0	100	2
	07EE 6009	Power Electronics Lab	0	0	2	100	0	100	1
	07EE 6111	Introduction to Seminar	0	1	0	0	0	0	0
	TOT	AL	15	6	2	400	300	700	21

L-Lecture T-Tutorial P-Practical

ICA-Internal Continuous Assessment

ESE-End Semester Examination

ELECTIVE I

- 07EE 6207 Optimization Techniques
- 07EE 6117 Power Semiconductor Devices & Modelling
- 07EE 6127 High Voltage AC and DC Transmission
- 07EE 6137 Dynamics of Electric Machines

Note: 8 hours/week is meant for departmental assistance by students.

Exam	Course Code	Course Title	Ho	urs/w	eek	ICA	FSF	Total	Cradita
Slot	Course Coue	Course Thie	L	Т	Р	ICA	LOL	Total	Creatis
А	07EE 6102	Analysis of Power Electronic Circuits II	3	1	0	40	60	100	4
В	07EE 6104	Switched Mode Power Converters	3	0	0	40	60	100	3
С	07EE 6106	Advanced Electric Drives	3	0	0	40	60	100	3
D	07EE 6xxx	Elective II	3	0	0	40	60	100	3
Е	07EE 61xx	Elective III	3	0	0	40	60	100	3
	07EE 6114	Mini Project	0	0	2	100	-	100	2
	07EE 6116	Advanced Power Electronics Lab	0	0	2	100	-	100	1
	07EE 6124	Seminar I	0	0	2	100	-	100	2
TOTAL		15	1	6	500	300	800	21	

L-Lecture	T -Tutorial	P-Practical
ESE- End Se	mester Examir	nation

ICA-Internal Continuous Assessment

ELECTIVE II

- 07EE 6208 Flexible AC Transmission Systems
- 07EE 6118 Design of Power Electronic System
- 07EE 6128 Nonlinear Control Systems
- 07EE 6138 Computer Aided Design of Electrical Machines

ELECTIVE III

- 07EE 6112 Industrial Control Electronics
- 07EE 6122 Renewable Energy Technologies
- 07EE 6132 Optimal and Adaptive Control Systems
- 07EE 6142 Robotics and Automation

Note: 8 hours / week is meant for departmental assistance by students.

Industrial Training Optional (During inter semester holydays of 2nd & 3rd Semesters)

Exam	Course Code	Course Title	Ho	urs/v	week	ICA	FSF	FSE Total	Credits	
Slot	Course Coue	Course Thie	L	Т	Р	ICA	LOL	Total		
Α	07EE 7xxx	Elective IV	3	0	0	40	60	100	3	
В	07EE 7xxx	Elective V	3	0	0	40	60	100	3	
	07EE 7105	Seminar II	0	0	2	100	0	100	2	
	07EE 7107	Project (Phase 1)	0	0	12	50	0	50	6	
	TOTAL		6	0	14	230	120	350	14	

T-Tutorial P-Practical L-Lecture **ESE-** End Semester Examination

ICA-Internal Continuous Assessment

ELECTIVE IV

07EE 7101	Digital Control Systems
-----------	-------------------------

- 07EE 7211 Power Quality
- Industrial Instrumentation 07EE 7121
- 07EE 7131 **Digital Signal Processors**

ELECTIVE V

- Special Electrical Machines and Drives Soft Computing Techniques 07EE 7103
- 07EE 7213
- Electromagnetic Compatibility 07EE 7123
- Electric Systems for Wind and Solar Energy 07EE 7133

Sl.	Course code	Subject	Hours/week		Hours/week		ICA	ESE	Total	Credits
110.	course coue	Subject	L	Т	Р					
1	07EE 7102	Project (Phase 2)	0	0	21	70	30	100	12	

L-Lecture T-Tutorial P-Practical ESE- End Semester Examination.

ICA-Internal Continuous Assessment

Total credits for all semesters: 68

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07MA 6019	APPLIED MATHEMATICS	3-1-0-4	2015

Prerequisite: UG level Mathematics

Course Objectives : To familiarize the students with the ideas and notions of Eigen value problems, principle of least squares, geometry of Fourier series, wavelets, development of probability distributions and probability theory, aspects of inferential statistics, reliability modelling, stationary stochastic processes, discrete time Markov chains and its stationary distributions etc.

Syllabus : Solution of system of linear equations, Eigen value problems in engineering, method of least squares, geometry of Fourier series, discrete wavelet transform, probability distributions, conditional probability, CLT, linear regression and correlation, statistical inference, reliability, stationary processes and Markov chains.

Course Outcome: These concepts will help the students to appreciate (i) matrix methods in engineering, structure of vector spaces applied to wavelets which is a tool in signal and image processing and (ii) probabilistic and statistical methods to understand and analyze uncertainty.

References

- 1. Datta, B N (2010), *Numerical Linear Algebra and Applications*, 2nd Edition, PHI Learning Pvt. Ltd., Delhi. (for Module 1).
- 2. Gubner J A (2006), *Probability and Random Processes for Electrical and Computer Engineers*, Cambridge University Press, Cambridge, New York. (for Modules 3 & 4).
- 3. Johnson, R A (2008), Miller & Freud's *Probability and statistics in Engineering*, 7th Edition, Pearson, Delhi. (for Modules 3, 4 & 5).
- 4. Medhi, J (2009), *Stochastic Processes*, 3rd Edn., New Age International (P) Ltd., New Delhi. (for Module 6).
- 5. Soman K P, Ramachandran, K I and Resmi N G (2013), *Insight into Wavelets, from Theory to Practice*, 3rd Edn., PHI Learning, Delhi. (for Module 2).
- 6. Kreyszig, E (1999/2007), *Advanced Engineering Mathematics*, 8th Edn, Wiley India Pvt. Ltd., Delhi. (for Module 1).

COURSE NO: 07MA 6019 (L-T-P: 3-1-0) CREDITS:

COURSE PLAN COURSE TITLE: APPLIED MATHEMATICS

(L-1-F: 3-1-0) CREDI15: 4							
Module	Contents	Contact Hours	Sem.Exam Marks:%				
Ι	Matrices and Least squares: Solution of system of linear equations using LU factorization - Gauss-Siedel methods - Eigen value problems in engineering - Method of least squares - Fitting a straight line and a second degree curve	8	15				
Π	Discrete wavelet transform: Fourier series and geometry - Discrete wavelet transform - Haar scaling function and wavelet function and their orthogonality - Haar bases	8	15				
	FIRST INTERNAL EXAM						
III	Probability distributions: Binomial and Poisson - Uniform, exponential, gamma and Weibull - Normal distributions	8	15				
IV	Probability: Conditional probability, Bayes' theorem, independence - Lindeberg-Levy central limit theorem - Sampling distributions (t , $\chi 2$ and F) - Linear regression and correlation	8	15				
	SECOND INTERNAL EXAM						
V	Statistics and Reliability: Unbiased estimators of mean and variance - Tests for mean and variance - Interval estimation of mean and variance - Reliability of series and parallel systems, failure time distributions, - Exponential and Weibull models in reliability and life testing.	10	20				
VI	Stochastic processes: Specification/ classification of processes - Strict and wide sense stationary processes - Discrete time Markov chains, higher transition probabilities - Communication classes, irreducible chains - Classification of states, regular chains - Stationary (invariant) distributions	7	20				

Internal Continuous Assessment: 40 marks

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction				
07EE 6201	SYSTEM DYNAMICS	3-1-0-4	2015				
Prerequisite: Fur	Prerequisite: Fundamental Knowledge of Control System						
Course Objectives							
To study the analysis of systems using state space model To understand the concept of stability							
To familiarize the optimal control problem							

Syllabus

State variable representation of system – Stability - Solution of state equation - State space representation of discrete time systems - Discretization of continuous time state equationcase studies - Lyapunov stability - definition of stability - stability analysis of non-linear system - Concepts of controllability and observability - effect of state feedback on controllability and observability - Design of full order and reduced order observer for continuous time and discrete time systems – case studies - Optimal control - optimal control based on quadratic performance measure - optimal control system design - solution of reduced Riccatti equation. Robust control systems - introduction - sensitivity analysis of robustness - design of robust PID controlled systems - Case Studies related to power system control, FACTs control.

Course Outcome

At the end of course, the student will be able to:

- Write state space equations for the Linear System
- Design feedback controller and examine stability of the system •

References

(L-T-P: 3-1-0)

- 1. Thomas Kailath, "Linear systems", Prentice Hall Inc
- 2. K.Ogata, "Modern Control Engineering" (Second Edition), Prentice Hall Inc, 1990
- 3. K.Ogata, "Discrete-time Control Systems", PHI
- 4. M.Gopal, "Digital Control and State Variable Methods", TMH, 1997
- 5. M.Gopal, "Modern Control System Theory", New Age International, 1993
- 6. P.Kundur, "Power System Stability and Control", McGraw-Hill Publishing Company, 1994
- 6. C.T.Chen, "Linear System Theory and Design", Holt Rinechart and Winston, 1984
- 7. Richard.C.Dorf and R.T Bishop, "Modern Control System", PHI

COURSE PLAN

COURSE NO: 07EE 6201 COURSE TITLE: SYSTEM DYNAMICS CREDITS: 4

Module	Contents	Contact Hours	Sem.Exam Marks: %
Ι	State variable representations of systems- transfer function and transfer function matrix from state variable form - solutions of state equations – state transition matrix - Eigen values of state matrix – modal decompositions	8	15

	T			
П	Observability and controllability - minimal realizations of MIMO systems - analysis of linear time varying systems- Case Study : 1. Power flow modal analysis and computing participation factors of an IEEE 14 bus power system 2. Weakest bus identification based on modal analysis 3. FACTS controller design based on modal analysis for damping dominant mode of oscillation	8	15	
	4. Minimal realization of some controllers			
	FIRST INTERNAL EXAM			
III	The concepts of stability- absolute stability and BIBO Stability- equilibrium states - Lyapunov stability theorems - stability analysis using Lyapunov's first method and second method - Lyapunov function and its properties.	8	15	
IV	 State variable feedback – controller design - Ackerman's Formula - stabilisation by state and output - feedback – observers for state measurement – observer design-combined observer-controller-reduced order observer - observability under feedback and invariant zeros Case Study: Design of an observer for a power system application Design of an observer for a power electronics application. Design of a power system stabilizer based on state variable feedback 	8	15	
SECOND INTERNAL EXAM				
V	 Compensators -Design of stable systems using Lyapunov method - MATLAB Exercises. Case Study: Design of compensators for a real power system Design of compensators for a standalone power system based on renewable technologies. Design of a compensator for parametric variations that affect drives 	8	20	
VI	Difference equation model for LTIV systems - impulse response model - transfer function model - discrete state space representation - solution of state equations - controllability and observabilty - stability analysis using Lyapunov method - state feedback of linear discrete time systems- Design of Observers- MATLAB Exercises.	8	20	

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	- 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course N	0.	Course Name	L-T-P-Credits	Year of I	ntroduction
07EE 61	03	ANALYSIS OF POWER ELECTRONIC CIRCUITS - I	3-1-0-4	2	015
Prerequisi	te: Tr	ansient analysis of linear electric ci	rcuits and switch	ing behavio	our of
power elect	ronic	es devices			
Course Ob	jectiv	ves			
To provide	funde	amental concepts of various power e	electronic conve	rters and its	s detailed
analysis					
Syllabus	_				
Review of F	Power	Devices –gate drive circuit - di/dt an	nd dv/dt protectio	n- gate trigg	ger circuits –
Controlled r	ectifie	rs - analysis with RL & RLE loads - 11	iversion mode - et	tect of source	te inductance
- DC-DC CO	nverte	ers – analysis with RL & RLE load –	time ratio control	- current li	mit control –
invertor D	11 & 10 WM +	our-quadrant chopper – inverters – 1-p rechniques – linear & over modulation	hipolar & unipol	and Tull Drid	ge – 5-phase
side current	_ filte	er - current source inverter - load com	mutated CSL - 1-	al voltage sv	hase _ IGBT
based CSI –	AC v	oltage controllers - ON-OFE control -	- phase angle con	trol $=$ input	PF = integral
cvcle contro	1 - two	o stage sequence control with R load –	3-phase full-wave	e controller y	with R load –
waveforms.	Cyclo	converter – single-phase to single-phase	ase cycloconverte	r with R &]	RL load -3 -
phase to 3-p	hase c	cycloconverter – control scheme.	5		
Course Out	come				
After succe	ssful	completion of this course the studen	t will be able to	analyse AC	-DC control
rectifier, D	C-DC	converter, DC-AC Inverter, AC vol	ltage controller a	nd AC-AC	conversion.
References	5				
1 Ned Des 2 M.H Edu	 Ned Mohan, Undeland, Robbins, "Power Electronics Converters, Applications and Design", John Wiley 2006 M.H. Rashid, "Power Electronics Circuits, Design and Applications", Pearson Education 				
2 Cyr) Sin	ogh K B Khanchandani "Power Fl	ectronics" Tata	McGraw-F	611
5 Dan	iel W	V Hart, "Introduction to Power Elect	tronics", Prentic	e-Hall	
6 Jose	eph V	ithayathil , "Principles of Power El	ectronics", Mc-	Graw Hill	
7 Wil	liam S	Shepherd, Li Zhang, "Power Conve	rter Circuits", N	Iarcell Dek	ker Inc
		COUDSE DI A	N		
		COURSETER			
COU	RSE	NO: 07EE 6103 COURSE T	TLE: ANALY	SIS OF PO	WER
		ELECTRONIC CIRC	CUITS - I		
		(L-T-P: 3-1-0) CR	EDITS: 4		
Module		Contents		Contact Hours	Sem.Exam Marks
	Revi	ew of Power Devices – characteristic	s of Ideal and		
	pract	tical switches - Power diodes - rev	verse recovery		
т	chara	acteristics - power transistors - power	er MOSFET –	Q	15
I	IGB	Γ – Thyristor – GTO – switching ch	naracteristics –	0	15
	indu	ctive load – switching losses – gate drive	e circuit - di/dt		
	and c	dv/dt protection			
					Page 9 of 73

П	Gate drive circuit - di/dt and dv/dt protection- gate trigger circuits – pulse triggering using pulse transformers and optocouplers – power dissipation and selection of heat sink. Controlled rectifiers – single-phase half-wave converter full converter – semi converter - analysis with RL & RLE loads – continuous & discontinuous conduction - input PF with continous and ripple free load current - inversion mode.	8	15
	FIRST INTERNAL EXAM	I	
III IV	Effect of source inductance - 3-phase - half-wave , full converter & semi converter – analysis with RLE loads – continuous conduction only – inversion mode - effect of source inductance –line notching and distortion - single- phase dual converters – circulating & non circulating current operation. DC-DC converters – Step-down chopper – step- up chopper - analysis with RL & RLE load – time ratio control – current limit control – two-quadrant & four- quadrant chopper – voltage commutated chopper – current commutated chopper. Inverters – 1-phase half bridge and full bridge – Analysis with RL load - THD– 3-phase inverter – 180° mode – analysis with RL load – common mode voltage - voltage control of inverters - PWM techniques – single pulse, sinusoidal pulse width modulation – linear & over	8	15
	modulation - bipolar & unipolar voltage switching - DC side current – effect of blanking time on voltage in PWM inverter.		
	SECOND IN LEKNAL EXAM		
V	Filter - current source inverter – load commutated CSI – auto-sequential current fed inverter - 1-phase & 3-phase – IGBT based CSI – control of current magnitude.AC voltage controllers – ON-OFF control – phase angle control – 1-phase full wave – analysis with R, L, RL load – input PF - Integral cycle control - two stage sequence control with R load	8	20
VI	3-phase full-wave controller with R load – waveforms. Cycloconverter – single-phase to single-phase cycloconverter with R & RL load - 3-phase 3-pulse cycloconverter – circulating current mode operation – circulating current-free mode operation - 3-phase to 3- phase cycloconverter – control scheme	8	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

End Semester Examination: 60 marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction	
07EE 6105	ELECTRIC DRIVES	3-0-0-3	2015	
Prerequisite: Fundamental Knowledge of various types of AC & DC motors				

Course Objectives

To provide a strong background on various methods of speed control of different electrical machines

Syllabus

Electric Drives – advantages - equivalent values of drive parameters - steady state stability load equalization –determination of motor rating. DC motor drives – Transient analysis of separately excited motor – speed control – controlled rectifier fed DC drives - three-phase fully controlled & half controlled rectifier control separately excited DC motor - dual converter– rectifier control of series motor –chopper control of separately excited DC motor and series motor –closed loop speed control. Induction motor drives – 3-phase induction motor - analysis with unbalanced source voltages and single-phasing –braking – speed control – VSI and CSI induction motor drives – cycloconverter control – slip power recovery - subsynchronous and super synchronous motoring and regeneration - single phase induction motor – speed control. Synchronous motor drives– torque equation – power factor control – operation with non-sinusoidal supply - speed control of synchronous motors – rotor position encoder – closed loop speed control.

Course Outcome

After successful completion of this course the students will know the method of control of DC Motor and Induction motor by using power electronic based converters and selection of motors for specific applications, study about starting, running & breaking.

References

- 1. K Dubey, 'Power Semi-conductor Controlled Drives", Prentice Hall
- 2 R. Krishnan, "Electical Motor Drives", Prentice Hall of India
- 3. GK Dubey, "Fundamentals of Electrical Drives", Narosa
- 4. Bimal K Bose, "Modern Power Electronics & AC Drives", Prentice Hall of India
- 5. Vedam Subarhmanian, "Electric Drives", Tata McGraw Hill

COURSE PLAN

COURSE NO: 07EE 6105 (L-T-P: 3-0-0) CREDITS: 3

COURSE TITLE: ELECTRIC DRIVES

Module	Contents	Contact Hours	Sem.Exam Marks	
Ι	Electric Drives – advantages – parts of electric drives - dynamics of electric drive - torque equation – four quadrant operation - equivalent values of drive parameters- classification of load torques - steady state stability - load equalization - Classes of motor duty- determination of motor rating.	4	15	
II	DC motor drives – starting – regenerative braking, dynamic braking, plugging – Transient analysis of separately excited motor – speed control – controlled rectifier fed DC drives – single phase fully controlled & half controlled rectifier control of separately excited DC motor – discontinuous and continuous conduction - three- phase fully controlled & half controlled rectifier control separately excited DC motor	9	15	
	FIRST INTERNAL EXAM			
Ш	Dual converter for multi-quadrant operation of separately excited DC motor – rectifier control of series motor – supply harmonics, power factor and ripple in motor current –chopper control of separately excited DC motor and series motor –closed loop speed control below and above base speed. Induction motor drives – 3-phase induction motor - torque equation – analysis with unbalanced source voltages and	5	15	
IV	single-phasing – analysis of induction motor fed from non- sinusoidal voltage supply – regenerative braking, pugging, dynamic braking – speed control – pole changing – stator voltage control – static rotor resistance control - stator frequency control below and above base speed	6	15	
SECOND INTERNAL EXAM				
V	VSI and CSI induction motor drives – cycloconverter control – closed loop slip controlled VSI and CSI drive – slip power recovery – static Kramer drive – static Scherbius drives – subsynchronous and super synchronous motoring and regeneration - single phase induction motor – equivalent circuit – speed control.	6	20	
VI	Synchronous motor drives – cylindrical rotor and salient pole types – torque equation – power factor control – operation with non-sinusoidal supply - speed control of synchronous motors – true synchronous mode and self controlled mode – rotor position encoder – load commutated synchronous motor drive – closed loop speed control – line commutated cycloconverter fed synchronous motor drive.	6	20	

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

End Semester Examination: 60 marks

ELECTIVE I

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6207	OPTIMIZATION TECHNIQUES	3-0-0-3	2015
D			

Prerequisite: Nil

Course Objectives

This course deals with optimization techniques of linier systems both constrain and nonconstrained.

Syllabus

Linear programming: overview of optimization techniques -Definitions and theorems-Simplex method-Revised simplex method-Duality and Dual simplex method-Sensitivity analysis. Unconstrained dimensional optimization techniques: Necessary and sufficient conditions-search methods (unrestricted Fibonacci and golden)-Direct search methods-Descent methods-Steepest descent - Constrained optimization techniques & dynamic programming: Equality and inequality constraints-Kuhn-Tacker conditions-Gradient projection method-cutting plane method-.Principle of optimality-recurrence relation-Computation procedure-continuous dynamic programming. Recent developments in optimization techniques.

Course Outcome

After successful completion of this course the students should be able to apply linear programming methods to engineering problems, distinguish between constrain and non-constrain optimisation and know the principle of dynamic programming

References

- 1. Rao S.S, 'Optimisation: Theory and Application", Wiley Eastern Press
- 2. Pierre, D.A., "Optimisation, Theory with Applications", John Wiley & Sons
- 3. Fox, R.L., "Optimisation method for Engineering Design", Addition Wesley
- 4. Hadely, G., "Linear Programming", Addition Wesley
- 5. Bazaara & Shetty, "Non-linear Programming"
- 6. D.E. Goldberg, "Genetic Algorithm in Search, Optimization, and Machine Learning", Addison-Wesly, 1989.
- 7. Marco Dorigo, Vittorio Miniezza and Alberto Colorni, "*Ant System:Optimization by a colony of Cooperation Agent*", IEEE transaction on system man and Cybernetics-Part B:cybernetics, Volume 26, No 1, pp. 29-41,1996.
- Shi, Y. Eberhart, R.C., "A Modified Particle Swarm Optimizer", Proceedings of the IEEE International conference on Evolutionary Computation, Anchorage, AK, pp. 69-73, May 1998

COURSE PLAN COURSE NO: 07EE 6207 (L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks: %	
Ι	Linear programming: Statement and classification of optimization problems overview of optimization techniques standard form of linear programming problems- Definitions and theorems-Simplex method	6	15	
Π	Revised simplex method-Duality and Dual simplex method-Sensitivity analysis. Unconstrained dimensional optimization techniques: Necessary and sufficient conditions-search methods (unrestricted Fibonacci and golden)-Interpolation methods (Quadratic, Cubic and direct root method).	6	15	
	FIRST INTERNAL EXAM			
III	Direct search methods-Random search-pattern search and Rosen Brock's hill climbing method-Descent methods- Steepest descent, conjugate gradient, Quasi Newton and DFE method.	6	15	
IV	Constrained optimization techniques & dynamic programming: Necessary and sufficient conditions- Equality and inequality constraints-Kuhn-Tacker conditions-Gradient projection method-cutting plane method-Penalty function method (Interior and exterior).	6	15	
SECOND INTERNAL EXAM				
V	Principle of optimality-recurrence relation-Computation procedure-continuous dynamic programming-case studies	6	20	
VI	Recent developments in optimization techniques: Rosenbrocks Rotating Coordinate Method-Tabu search- Simulated Annealing-Genetic Algorithm-Particle Swarm Optimization –Ant colony Optimization-Bees Algorithm- case studies.	6	20	

Internal Continuous Assessment: 40 marks

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	-15 Marks
Second Internal Test	- 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course I	No.	Course Name	L-T-P-Credit	s Year of I	ntroduction
07EE 61	117	POWER SEMICONDUTOR DEVICES & MODELING	3-0-0-3	2	2015
Prerequisi	ite: Fu	ndamental Knowledge about the ph	sysics of Semic	onductor dev	vices
Course Ol	bjectiv	es			
The purpos	se is to	make students aware of the device p	physics and ope	ration of con	nmon power
semicondu S-llaburg	ctor de	vices and also those which are in t	he developmen	t stage	
Synabus Douvon ouvit	tahina	daviaas avamiaus Davian handling	aanahility D	wigo coloctic	n strate ex
Power swit		EMI due to emitching Demor	capability - De	t Controllo	n strategy –
Switching	losses	- EMI due to switching - Power	anodes –Curren	n Controlled	Devices -
DJIS-PO	ower D	arington - Invisions –Gate and	switching cha	racteristics ·	· series and
paranel op		and ICDTs Dringings of construct	or – steady state	e and dynam	tion Standy
Power MO	SFE18	s and IGBTS – Principle of construct	Decise of CT	g Characteris	T DOT and
state and d	ynami	c models of MOSFET and IGBTS	- Basics of GI	J, MCT, FC	I, RCI and
IGCI. FIII	ing and	Protection Circuits- Over voltag	ge, over curren	t and gate p	rotections -
Design of	snubbe	ers. Thermal Protection - Heat tran	ster - Cooling	- Guidance I	or near sink
selection –	Moun	ung types.			
After succe	essful a	completion of this course the stude	nts know the ph	vsics of sem	iconductor
devices co	ontrol c	haracterise and protection methods	of voltage con	trol & current	nt control
devices, co	metho	d of cooling	of voltage con		
Deference	s memo	d of cooling			
 Kas B W Strat Mol Dest M I 	 Kassakian J G et al, "Principles of Power Electronics", Addison Wesley B W Williams, "Principles and Elements of Power Electronics", University of Strathclyde, Glasgow Mohan, Undeland, Robins, "Power Electronics – Concepts, Applications and Design", JohnWiley and Sons, Singapore M D Singh, K B Khanchandani, "Power Electronics", Tata McGraw Hill 			sity of <i>and</i> 1	
		COURSE PLA	N		
COUR	RSE NO	D: 07EE 6117 COURSE TIT	LE: POWER	SEMICONI	DUTOR
		DEVICES & MOD	ELING		
		(L-T-P: 3-0-0) CF	REDITS: 3		
Module		Contents		Contact Hours	Sem.Exam Marks:%
	Powe	r switching devices overview – Attrib	utes of an ideal		
	switcl	n, application requirements, circuit sy	mbols - Power		
т	handl	ing capability – SOA - Device selec	tion strategy –	6	15
· ·	On-st	ate and switching losses – EMI due	to switching -	U U	10
	Powe	r diodes – Types - forward and reverse	characteristics		
	- swit	ching characteristics – rating - Schottl	ty Diode		
	Curre	nt Controlled Devices - BJT's -	Construction,		
II	chara	cteristics. Negative temperature co	s, switching efficient and	6	15
	secon	dary breakdown; Power Darlington	errorent and		

	FIRST INTERNAL EXAM		
Ш	Thyristors – Physical and electrical principle underlying operation - Gate and switching characteristics - converter grade and inverter grade and other types - series and parallel operation - comparison of BJT and Thyristor – steady state and dynamic models of BJT & Thyristor.	6	15
IV	Voltage Controlled Devices - Power MOSFETs and IGBTs – Principle of voltage controlled devices, construction, types, Device physics, Static and Switching Characteristics- Steady state and dynamic models of MOSFET and IGBTs - Basics of GTO, MCT, FCT, RCT and IGCT.	6	15
	SECOND INTERNAL EXAM		
V	Firing and Protection Circuits - Necessity of isolation, pulse transformer, optocoupler – Gate drives circuit: SCR, MOSFET, IGBTs and base driving for power BJT - Over voltage, over current and gate protections - Design of snubbers.	6	20
VI	Thermal Protection - Heat transfer – conduction, convection and radiation - Cooling – liquid cooling, vapour – phase cooling - Guidance for hear sink selection – Thermal resistance and impedance -Electrical analogy of thermal components, heat sink types and design – Mounting types.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

Course No).	Course Name	L-T-P-Credits	Year of I	ntroduction
07EE 612	7	HIGH VOLTAGE DC AND AC TRANSMISSION	3-0-0-3	2	2015
Prerequisit	te: F	undamental Knowledge about the po	wer flow in tra	nsmission li	ne.
Course Ob	jecti	ives			
To understa	ind t	he concept, planning of DC power tr	ansmission and	l comparisor	n with AC
Power trans	smis	sion			
To analyze .	HVL	DC converters			
To study ab	out e	compounding and regulation			
To analyze	harn	nonics and design of filters			
To learn ab	out	HVDC cables and simulation tools			
Syllabus					
INTRODUC	TIO	N - Introduction of DC Power transp	mission technol	ogy –Descrij	ption of DC
transmission	syst	em – Planning for HVDC transmission –	Analysis of HV	DC Converter	rs– Choice of
converter co	onfig	guration –Converter bridge characteris	stics – Detailed	analysis of	f converters.
Compoundin	ng an	d Regulations - General –Inverter compo	ounding – Transn	ission charac	teristics with
the rectifier	and	l inverter compounding – Communica	ation link – Ti	ansformer ta	ap changing.
Harmonics a	ind f	ilters and Simulation – Generation of h	armonics – Des	ign of AC fi	lters and DC
filters –Intro	oduct	tion to system simulation – Modeling	of HVDC sys	tems for dig	ital dynamic
simulation.					
Course Out	com	e			
After succes	ssful	l completion of this course the studen	its able to unde	rstand princi	ipals and
technology	of D	OC transmission, know about HVDC	converter and c	ontrol of po	wer flow,
model HVD	DC li	ines and converters & the effects of h	armonic in DC	lines	
References					
1. Padiya	ar, K	K. R., "HVDC Power Transmission	System", Wiley	v Eastern Li	mited, New
Delhi	199	00, First edition.			
2. Edwar	rd W	/ilson Kimbark, "Direct Current Tra	nsmission", Vo	ol. I, Wiley I	nterscience,
New Y	York	, London, Sydney, 1971.			_
3. Colin	Ad	lamson and Hingorani N G, "H	igh Voltage	Direct Curi	rent Power
Transi	miss	tion", Garraway Limited, London, 196	50. · · · · · ·		T 1
4. Arrilla	aga,	J., "High Voltage Direct Current Ir	ansmission [*] , P	eter Pregrin	us, London,
1985.	ьD	as Dagamudra "Extra High Voltage	AC Transmis	ion Engine	wine" Nou
J. Kakus	itera	as Degaliludie, <i>Exira High Vollage</i>	AC Transmiss	tion Enginee	ering, new
Agem	licia	intonai (1) Etd., New Denn, 1990.			
		COURSE PLA	N		
COURSE	E NO	D: 07EE 6127 COURSE TITL	E. HIGH VOI	TAGE DC	ANDAC
coendi		TRANSMISSION (I_T_P· 3.0.0	CREDI	FS· 3	
					Same Eman
Module		Contents		Contact	Sem.Exam Marks:%
				Hours	17141 A5+ /0
	INT	RODUCTION - Introduction of	DC Power		
I	tran	smission technology - Comparison of	AC and DC	6	15
	tran	smission – Application of DC tra	ansmission –	Ŭ	
	Des	cription of DC transmission system			
	Plar	nning for HVDC transmission – Modern	trends in DC		
II	tran	smission. ANALYSIS OF HVDC CO	NVERTERS -	6	15
	Puls	se number – Choice of converter configu	ration		

	FIRST INTERNAL EXAM		
	Simplified analysis of Graetz circuit – Converter bridge		
III	characteristics – Characteristics of a twelve pulse converter	6	15
	– Detailed analysis of converters.		
	COMPOUNDING AND REGULATIONS - General -		
	Required regulation – Inverter compounding –		
IV	Uncompounded inverter - Rectifier compounding -	6	15
	Transmission characteristics with the rectifier and inverter		
	compounding –		
	SECOND INTERNAL EXAM		
	Communication link – Current regulation from the inverter		
V	side - Transformer tap changing. HARMONICS AND	6	20
v	FILTERS and SIMULATION - Introduction – Generation	0	20
	of harmonics – Design of AC filters and DC filters		
	Interference with neighbouring communication lines.		
VI	Introduction to system simulation – Philosophy and tools –	6	20
V I	HVDC system simulation – Modeling of HVDC systems	0	
	for digital dynamic simulation.		

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	- 15 Marks
Second Internal Test	- 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction	
07EE 6137	DYNAMICS OF ELECTRIC MACHINES	3-0-0-3	2015	
Prerequisite: Fu	ndamental Knowledge on steady st	ate operation of s	ynchronous	
machines, induct	ion machines and DC machines.			
Course Objectiv	es			
This course deals	s with generalized modeling and a	nalysis of differe	nt electrical machines	
used for industric	al drive applications.	2 5 55		
Syllabus				
Introduction – U	nified approach to the analysis of e	electrical machine	e – voltage, power and	
torque equation	-linear transformation - power in	nvariance – park'	s transformation. DC	
machines – app	lication of generalized theory to	separately excit	ed, shunt, series and	
compound machi	nes –Polyphase synchronous mach	ines – generalize	d machine equations –	
steady state analy	ysis – transient analysis –Inductior	n machines –gene	ralized model –steady	
state analysis –	equivalent circuit- effect of volta	ge and frequency	y variations – electric	
transients in indu	ction machines – speed control of i	nduction motor –	introduction to vector	
control -single pl	nase induction motor – generalized	model – steady s	tate analysis.	
Course Outcome		•	•	
After successful of	completion of this course the stude	nts will know the	working principles of	
electric machine	(DC machine, synchronous Machin	ne and induction r	nachine, Control	
techniques of ele	ctric motors, also the steady state a	nd transient analy	vsis.	
References				
1. Krauss, Was John Wiley	1. Krauss, Wasyncsuk and Sudholf, "Analysis of Electrical Machines and Drive Systems", John Wiley			
2. PS. Bhimbr	a, "Generalized Theory of Electrica	al Machines", Kh	anna Publishers	
3. A E Fitzger	ald, Kingsley, Umans, "Electric Me	achinery", McGra	aw Hill	
4. Adkins and	Harey, "General Theory of AC Ma	chines"		
5. Bimal K Bo	se, "Modern Power Electronics &	AC Drives", Pear	son Education	
	COURSE PLAN			

COURSE I LAN COURSE NO: 07EE 6137 COURSE TITLE: DYNAMICS OF ELECTRIC MACHINES

	$(L^{-1} - 1 - 3 - 0 - 0)$ CREDIID. 3		
Module	Contents	Contact Hours	Sem.Exam Marks: %
Ι	Introduction – Unified approach to the analysis of electrical machine – basic two-pole machine – Kron's primitive machine – voltage, power and torque equation – linear transformation from 3-phase to 2-phase - transformation from rotating axes to stationary axes – power invariance.	6	15
П	Park's transformation for 3-phase synchronous and induction machines. DC machines – application of generalized theory to separately excited, shunt, series and compound machines	6	15

(L-T-P: 3-0-0) CREDITS: 3

	FIRST INTERNAL EXAM		
III	Sudden short circuit of separately excited generator - separately excited dc motor - steady state and transient analysis – transfer functions of separately excited dc generator & motor.	6	15
IV	Polyphase synchronous machines – generalized machine equations – steady state analysis of salient pole and non- salient pole machines – phasor diagrams – power angle characteristics – reactive power – short circuit ratio – transient analysis – sudden 3-phase short circuit at generator terminals – reactance – time constants – transient power angle characteristics.	6	15
	SECOND INTERNAL EXAM		
V	Induction machines – 3-phase induction machine- generalized model – voltage equation – steady state analysis – equivalent circuit – torque-slip characteristics – effect of voltage and frequency variations – electric transients in induction machines	6	20
VI	Speed control of induction motor – introduction to vector control – applications in speed control of induction machine – single phase induction motor – generalized model – voltage and torque equations – steady state analysis.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07GN 6001	RESEARCH METHODOLOGY	0-2-0-2	2015

Prerequisite: Basic knowledge of engineering technology.

Course Objectives

The main objective of the course is to provide a familiarization with research methodology and to induct the student into the overall research process and methodologies. This course addresses:

- The scientific research process and the various steps involved
- Formulation of research problem and research design
- Thesis preparation and presentation.
- Research proposals, publications and ethics
- Important research methods in engineering

As a tutorial type course, this course is expected to be more learner centric and active involvement from the learners are expected which encourages self-study and group discussions. The faculty mainly performs a facilitator's role.

Syllabus

Overview of research methodology - Research process, scientific method, research design process. Research Problem and Design - Formulation of research task, literature reviewand web as a source, problem solving approaches, experimental research, and ex post facto research. Thesis writing, reporting and presentation -Interpretation and report writing, principles of thesis writing- format of reporting, oral presentation. Research proposals, publications and ethics - Research proposals, research paper writing, considerations in publishing, citation, plagiarism and intellectual property rights. Research methods – Modelling and Simulation, mathematical modeling, graphs, heuristic optimization, simulation modeling, measurement design, validity, reliability, scaling, sample design, data collection methods and data analysis

Course Outcome

At the end of course, the student will be able to:

- Discuss research methodology concepts, research problems, research designs, thesis preparations, publications and research methods.
- Analyse and evaluate research works and to formulate a research problem to pursue research
- Prepare a thesis or a technical paper, and present or publish them
- Apply the various research methods followed in engineering research for formulation and design of own research problems and to utilize them in their research project.

References

- C. R. Kothari, Research Methodology, Methods and Techniques, New Age International Publishers
- K. N. Krishnaswamy, Appa Iyer Sivakumar, M. Mathirajan, Management Research Methodology, Integration of principles, Methods and Techniques, Pearson Education
- R. Panneerselvam, Research Methodology, PHI Learning
- Deepak Chawla, Meena Sondhi, Research Methodology-concepts & cases, Vikas Publg House
- J.W Bames, Statistical Analysis for Engineers and Scientists, McGraw Hill, N.York
- Schank Fr., Theories of Engineering Experiments, Tata Mc Graw Hill Publication.
- Willktnsion K. L, Bhandarkar P. L, Formulation of Hypothesis, Himalaya Publication.

- Fred M Kerlinger, Research Methodology
- Ranjit Kumar, Research Methodology A step by step guide for beginners, Pearson Education
- John W Best, James V Kahan Research in Education, PHI Learning
- Donald R. Cooper, Pamela S. Schindler, Business Research Methods, 8/e, Tata McGraw-Hill Co Ltd
- Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, Ess Ess Publications. 2 volumes
- Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications.
- Day, R.A., 1992. How to Write and Publish a Scientific Paper, Cambridge University Press.
- Fink, A., 2009. Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications
- Donald H.McBurney, Research Methods, 5th Edition, Thomson Learning, ISBN:81-315-0047-0,2006
- Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers..
- Wadehra, B.L. 2000. Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing
- Carlos, C.M., 2000. Intellectual property rights, the WTO and developing countries: the TRIPS agreement and policy options. Zed Books, New York.
- Additional suitable web resources
- Guidelines related to conference and journal publications

COURSE PLAN

COURSE NO: 07GN 6001 COURSE TITLE: RESEARCH METHODOLOGY (L-T-P: 0-2-0) CREDITS: 2

Module	Contents	Contact Hours	Sem.Exam Marks
Ι	Overview of Research Methodology: Research concepts – meaning – objectives – motivation - types of research – research process – criteria for good research – problems encountered by Indian researchers - scientific method - research design process – decisional	5	15
II	Research Problem and Design: Formulation of research task – literature review – methods – primary and secondary sources – web as a source – browsing tools - formulation of research problems – exploration - hypothesis generation - problem solving approaches- introduction to TRIZ(TIPS)- experimental research – principles -Laboratory experiment - experimental designs - ex post facto research - qualitative research	5	15
	FIRST INTERNAL EXAM		
III	Thesis writing, reporting and presentation: Interpretation and report writing – techniques of interpretation – precautions in interpretation – significance of report writing – principles of thesis writing- format of reporting -	4	15

	different steps in report writing – layout and mechanics of research report - references – tables – figures – conclusions. oral presentation – preparation - making presentation – use of visual aids - effective communication		
IV	Research proposals, publications, ethics and IPR: Research proposals - development and evaluation – research paper writing – layout of a research paper - journals in engineering – considerations in publishing –scientometry- impact factor- other indexing like h-index – citations - open access publication -ethical issues - plagiarism –software for plagiarism checking- intellectual property right- patenting case studies .	5	15
	SECOND INTERNAL EXAM		
V	Research methods – Modelling and Simulation: Modelling and Simulation – concepts of modelling – mathematical modelling - composite modelling – modelling with – ordinary differential equations – partial differential equations – graphs heuristics and heuristic optimization - simulation modelling	5	20
VI	Research Methods – Measurement, sampling and Data acquisition: Measurement design – errors -validity and reliability in measurement - scaling and scale construction - sample design - sample size determination - sampling errors - data collection procedures - sources of data - data collection methods - data preparation and data analysis	4	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

07EE 6009 POWER ELECTRONICS LAB 0-0-2-1 2015 Prerequisite: Knowledge about power electronic devices and ability to use different laboratory measurement equipments. Image: Course Objectives Image: Courset objectives Objectives Image: Course Objecti	Course No.	Course Name	L-T-P-Credits	Year of Introduction	
 Prerequisite: Knowledge about power electronic devices and ability to use different laboratory measurement equipments. Course Objectives To provide practical knowledge through hardware implementation & simulation of power electronic circuits List of Exercises / Experiments 1. Different types of Gate drives and protection circuits for MOSFETS, IGBTs and Thyristors 2. Single Phase Semi-converter with R-L load for continuous & discontinuous conduction modes 3. Single Phase Full-converter with R-L load for continuous & discontinuous conduction modes 4. SCR firing circuit and grid synchronization using digital and analog ICs 5. Controlled and Uncontrolled rectifier with different types of filters - continuous & discontinuous and es of operation 6. Speed control of chopper fed DC motor drives 7. Transformer, Inductor and low pass filter design 8. Current & Voltage commutated thyristorized chopper 9. Regulated linear power supply with over current protection using OP-amp and power transistors and PCB design 10. Half bridge square wave inverter feeding RL load 11. Single-phase Sine triangle PWM inverter feeding RL load 12. Single Phase AC Voltage Controller using TRIAC 13. Control of d-c-c converters (Buck, Boost and Buck-Boost converter) using discrete ICs like TL494/SG3525/UC3842, Power loss computation, Selection of heatsinks and PCB design. 14. Study of harmonic pollution by power electronics loads using power quality analyser 	07EE 6009	POWER ELECTRONICS LAB	0-0-2-1	2015	
Course Objectives To provide practical knowledge through hardware implementation & simulation of power electronic circuits List of Exercises / Experiments 1. Different types of Gate drives and protection circuits for MOSFETS, IGBTs and Thyristors 2. Single Phase Semi-converter with R-L load for continuous & discontinuous conduction modes 3. Single Phase Full-converter with R-L load for continuous & discontinuous conduction modes 3. Single Phase Full-converter with R-L load for continuous & discontinuous conduction modes 4. SCR firing circuit and grid synchronization using digital and analog ICs 5. Controlled and Uncontrolled rectifier with different types of filters - continuous & discontinuous modes of operation 6. Speed control of chopper fed DC motor drives 7. Transformer, Inductor and low pass filter design 8. Current & Voltage commutated thyristorized chopper 9. Regulated linear power supply with over current protection using OP-amp and power transistors and PCB design 10. Half bridge square wave inverter feeding RL load 11. Single-phase AC Voltage Controller using TRIAC 13. Control of dc-dc converters (Buck, Boost and Buck-Boost converter) using discrete ICs like TL494/SG3525/UC3842, Power loss computation, Selection of heatsinks and PCB design. <td colspan<="" td=""><td>Prerequisite: I laboratory mea</td><th>Knowledge about power electronic de surement equipments.</th><th>evices and ability</th><th>to use different</th></td>	<td>Prerequisite: I laboratory mea</td> <th>Knowledge about power electronic de surement equipments.</th> <th>evices and ability</th> <th>to use different</th>	Prerequisite: I laboratory mea	Knowledge about power electronic de surement equipments.	evices and ability	to use different
 To provide practical knowledge through hardware implementation & simulation of power electronic circuits List of Exercises / Experiments 1. Different types of Gate drives and protection circuits for MOSFETS, IGBTs and Thyristors 2. Single Phase Semi-converter with R-L load for continuous & discontinuous conduction modes 3. Single Phase Full-converter with R-L load for continuous & discontinuous conduction modes 4. SCR firing circuit and grid synchronization using digital and analog ICs 5. Controlled and Uncontrolled rectifier with different types of filters - continuous & discontinuous modes of operation 6. Speed control of chopper fed DC motor drives 7. Transformer, Inductor and low pass filter design 8. Current & Voltage commutated thyristorized chopper 9. Regulated linear power supply with over current protection using OP-amp and power transistors and PCB design 10. Half bridge square wave inverter feeding RL load 11. Single-Phase Sine triangle PWM inverter feeding RL load 12. Single Phase AC Voltage Controller using TRIAC 13. Control of dc-dc converters (Buck, Boost and Buck-Boost converter) using discrete ICs like TL494/SG3525/UC3842, Power loss computation, Selection of heatsinks and PCB design. 14. Study of harmonic pollution by power electronics loads using power quality analyser 	Course Object	ives			
 List of Exercises / Experiments 1. Different types of Gate drives and protection circuits for MOSFETS, IGBTs and Thyristors 2. Single Phase Semi-converter with R-L load for continuous & discontinuous conduction modes 3. Single Phase Full-converter with R-L load for continuous & discontinuous conduction modes 3. Single Phase Full-converter with R-L load for continuous & discontinuous conduction modes 4. SCR firing circuit and grid synchronization using digital and analog ICs 5. Controlled and Uncontrolled rectifier with different types of filters - continuous & discontinuous modes of operation 6. Speed control of chopper fed DC motor drives 7. Transformer, Inductor and low pass filter design 8. Current & Voltage commutated thyristorized chopper 9. Regulated linear power supply with over current protection using OP-amp and power transistors and PCB design 10. Half bridge square wave inverter feeding RL load 11. Single-phase Sine triangle PWM inverter feeding RL load 12. Single Phase AC Voltage Controller using TRIAC 13. Control of dc-dc converters (Buck, Boost and Buck-Boost converter) using discrete ICs like TL494/SG3525/UC3842, Power loss computation, Selection of heatsinks and PCB design. 14. Study of harmonic pollution by power electronics loads using power quality analyser 	To provide pra electronic circi	ctical knowledge through hardware i uits	mplementation &	simulation of power	
 Different types of Gate drives and protection circuits for MOSFETS, IGBTs and Thyristors Single Phase Semi-converter with R-L load for continuous & discontinuous conduction modes Single Phase Full-converter with R-L load for continuous & discontinuous conduction modes SCR firing circuit and grid synchronization using digital and analog ICs Controlled and Uncontrolled rectifier with different types of filters - continuous & discontinuous modes of operation Speed control of chopper fed DC motor drives Transformer, Inductor and low pass filter design Current & Voltage commutated thyristorized chopper Regulated linear power supply with over current protection using OP-amp and power transistors and PCB design Half bridge square wave inverter feeding RL load Single Phase AC Voltage Controller using TRIAC Control of dc-dc converters (Buck, Boost and Buck-Boost converter) using discrete ICs like TL494/SG3525/UC3842, Power loss computation, Selection of heatsinks and PCB design. Study of harmonic pollution by power electronics loads using power quality analyser 		List of Exercises / Exp	periments		
14. Study of harmonic pollution by power electronics loads using power quality analyser	 Different Thyristor Single Phe conduction Single Phe conduction Single Phe conduction Single Phe conduction SCR firm Controlle discontinn Speed control Speed control Transform Current & Regulated transistor Half bridge Single Phe 12. Single Phe 13. Control of ICs like T PCB desi 	types of Gate drives and protection c s ase Semi-converter with R-L load for on modes ase Full-converter with R-L load for on modes g circuit and grid synchronization us d and Uncontrolled rectifier with diff uous modes of operation ntrol of chopper fed DC motor drives ner, Inductor and low pass filter desig z Voltage commutated thyristorized c l linear power supply with over current s and PCB design ge square wave inverter feeding RL le ase Sine triangle PWM inverter feed ase AC Voltage Controller using TR f dc-dc converters (Buck, Boost and F L494/SG3525/UC3842, Power loss of gn.	eircuits for MOSF r continuous & dis continuous & dise ing digital and and erent types of filte gn chopper ent protection usin oad ing RL load IAC Buck-Boost conve computation, Sele	ETS, IGBTs and scontinuous continuous alog ICs ers - continuous & g OP-amp and power	

- i) Practical Records /outputs 40%
- ii) Regular Class Viva-Voce 20%
- iii) Final Test (Objective) 40%

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6111	INTRODUCTION TO SEMINAR	0-1-0-0	2015
Course Objectiv	WAS	·	

Course Objectives

The basic objective of this course is to improve the oral communication skill of the students.

Syllabus

Individual students are required to choose a topic (need not be engineering) of their interest in consultation with faculty and present for about 30 minutes. They will be guided about sound modulation, sequence of presentation, eye contact and writing on the black board.

Course No).	Course Name	L-T-P-Credit	s Year of I	ntroduction
07EE 6102	2	ANALYSIS OF POWER ELECTRONIC CIRCUITS – II	3-1-0-4	2	015
Prerequisit	t e: A	Attended course on Analysis of Pow	er Electronic C	ircuits – I [0	7EE 6103]
Course Ob	ject	ives			
To provide	a s	strong foundation on advanced conv	verter techniqu	es and their	r control in
Svllabus	ver	Electronic Systems			
PWM Strate	gies	for Inverters - Space Vector Modulation	on –Power facto	r improvemer	nt of rectifier
circuits – PV	VМ	control – semi converters & full conve	erters – Twelve	-pulse conver	ter. Z-source
inverter -mo	odifi	ed carrier based PWM inverter - Multile	evel inverters -	Diode-clamp	ed multilevel
inverter - Fly	ing	-capacitors multilevel inverter – cascaded	d multilevel inve	erter – PWM f	for multilevel
inverters –	con	nparison. Current Regulated PWM V	oltage Source	Inverters -Va	ariable Band
Hysteresis C	Contr	rol, Fixed Switching Frequency Current	Control Metho	ds Matrix c	onverter - 3-
phase matrix	cor	nverter – switching control strategy.			
Course Out	com	le			
At the end of		tree, the student will be able to:	-:1		
• Vari	ous	types of inverters and their working prin	cipies		
Power Mother	er la	of current control in invertors			
• Met	liou	of current control in inverters			
1 Ean	αIi	n Luo & Hong Va "Powar Flactroni	cs Advanced	Conversion	
1. Fally Tech	g Li hnoi	logies" CRC Press	cs, Auvancea C	onversion	
2. Brar	nko	L Dokic & Branko Blanusa. "Power	Electronics. C	onverters and	d
Regi	ulat	ors", Springer	,		
3. Barr	y V	Villiams, "Principles and Elements of	Power Electro	nics", Unive	ersity of
Stra	thcl	yde	<i>.</i>		
4. Mul	nam	mad H. Rashid, " <i>Power Electronics</i> (Circuits, Desig	n and Applic	ations",
Fear 5 Muk	rson	Education mad H Pashid (Ed) "Power Electron	ics Handbook	' Acadamic	Drace
6 Will	liam	Shepherd & Li Zhang "Power Con	verter Circuits'	' Marcel De	kker Inc
7. A.M. Trzvnadlowski, "Introduction to Modern Power Electronics", Wiley, 2010					
COURSE PLAN					
COURSE NO: 07EE 6102 COURSE TITLE: ANALYSIS OF POWER					
ELECTRONIC CIRCUITS – II					
		(L-T-P: 3-1-0) CR	REDITS: 4		
Module	Module Contents CREDITS: 4 Contact Hours				Sem.Exam Marks

Ι	PWM Strategies for Inverters - Review of SinusoidalPWM - Trapezoidal modulation, staircase modulation,stepped modulation, harmonic injected modulation	8	15
II	Delta modulation – Third harmonic PWM - Space Vector Modulation – concept of space vector - space vector switching - over modulation.	8	15
	FIRST INTERNAL EXAM		
Ш	Power factor improvement of rectifier circuits – Extinction angle control, symmetric angle control, PWM control - 1- phase sinusoidal PWM, 3-phase PWM rectifier - 1-phase series converters – semi converters & full converters – Twelve-pulse converter.	8	15
IV	Z-source inverter – equivalent circuit & operation – shoot- through zero state – modified carrier based PWM inverter with shoot-through zero state – modulation index and boost factor.	8	15
	SECOND INTERNAL EXAM		
V	Multilevel inverters – Diode-clamped multilevel inverter – improved diode-clamped inverter - Flying-capacitors multilevel inverter – cascaded multilevel inverter – PWM for multilevel inverters – comparison. Current Regulated PWM Voltage Source Inverters - Methods of Current Control, hysteresis Control- hysteresis current controller used in specific application- Variable Band Hysteresis Control, Fixed Switching Frequency Current Control Methods	8	20
VI	Matrix converter – principle – matrix converter switches - 3-phase matrix converter – switching control strategy - Venturini control method – principle – switching duty cycles –modulation matrix – realization of input filter - commutation and protection issues in matrix converter	8	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	C	ourse Name	L-T-P-Credits	Year of Ir	troduction
07EE 6104	SWI POWE	TCHED MODE R CONVERTERS	3-0-0-3	20)15
Prerequisite:	ttended cou	rse on Analysis of Po	wer Electronic C	ircuits – I [0	7EE 6103]
Course Object	ves				
The students	o acquaint	with working, analys	is and modellin	g of differe	nt types of
Syllabus					
Converters in s	eady state - C	Converters without elect	rical isolation- bu	ick, boost and	d buck-boost
imbalance probl	ms and solution	ons-switch stress and util	ization Converter	Dynamics an	d control - ac
modeling appro	ch-state space	e averaged modeling-co	nverter transfer fi	inctions Dire	ct duty ratio
control-compari	on between di	rect duty ratio control ar	nd current mode co	ontrol. Resona	nt converters
-basic resonant	rcuit concept	s-load resonant converte	ers-resonant switcl	n converters-Z	ZVS clamped
voltage dc-dc c	nverters-resor	nant dc link inverters v	with zero coltage	switching-Uti	lity interface
issues and magn	tic circuits de	sign - Generation of cur	rent harmonics-cu	rrent harmoni	cs and power
factor-harmonic	standards and	l recommended practice	es -improved sing	le phase utili	ty interface-
active shaping o	input line cur	rent-improved 3-phase u	itility interface-ele	ctromagnetic	interference.
Course Outcom	9				
At the end of co	rse, the stude	nt will be able to:			
• Learn di	ferent types o	f inverter and control un	der static & dynar	nic states	
• Mathem	tical modellir	ng of converters			
Control	utput to meet	utility standards			
References	- • • •	D			
I. Robert W.	Erickson and	Dragan Maksimovic	, 'Fundamentals	of Power Ele	ectronics',
2 Ned Moha	Edition et al Power	Flectronics John W	ilev and Sons		
3 L. Umanand	"Power Ele	ctronics: Essentials &	Applications" V	Vilev India P	vt Ltd
4. S. S. Ang.	. Oliva. "Po	wer Switching Conver	ters". Marcel De	ekker. 2nd ed	
5. Keith H	Billings "Ha	ndbook of Switched	Mode Power S	upplies", M	cGraw Hill
Publishing Co	mpany	v			
6. Marian K.	Kazimierczu	k, "Pulse-width Modi	ilated DC-DC P	ower Conve	rters", John
Wiley& Sons	Ltd., 1st Edit	tion.			
7. Abraham	Pressman,"	Switching Power Sup	oply Design". N	IcGraw Hill	Publishing
Company.	notain "Swit	takad Mada Dowar Su	nligs in Practice	" John Wile	y and Song
9 H W Whi	tington R W	/ Flynn D F Macnh	erson "Switched	Mode Powe	r Supplies"
John Wiley &	Sons Inc., 2	nd Edition.	erson, <i>Switched</i>	moue rowe	supplies,
COURSE PLAN					
COURSE	COURSE NO: 07EE 6104 COURSE TITLE: SWITCHED MODE POWER				
CONVERTERS					
(L-T-P: 3-0-0) CREDITS: 3					
Modulo		Contonta		Contact	Sem.Exam
Mouule		Contents		Hours	Marks: %
Со	verters in ste	ady state - Converters v	vithout electrical		
I iso	ation- buck, b	oost and buck-boost cor	verters-different	6	15
mo	les of operation	on- converters with non	idealities -linear	U	15
and	switched mod	le power supplies.			

П	Converters with electrical isolation-forward converter-fly back converter-half bridge converter-full bridge converter- push pull converter-flux imbalance problems and solutions-switch stress and utilization.	6	15
III	Converter Dynamics and control - Basic ac modeling approach-state space averaged modeling-circuit averaging and averaged switch modeling-converter transfer functions. Direct duty ratio control-error amplifiers-current mode control-slope compensation-comparison between direct duty ratio control and current mode control.	6	15
IV	Resonant converters - Classification of resonant converters-basic resonant circuit concepts-load resonant converters-resonant switch converters-ZVS clamped voltage dc-dc converters	6	15
	SECOND INTERNAL EXAM		
V	Resonant dc link inverters with zero voltage switching- high frequency link integral half cycle converter.	6	20
VI	Utility interface issues and magnetic circuits design - Generation of current harmonics-current harmonics and power factor-harmonic standards and recommended practices-need for improved utility interface-improved single phase utility interface-active shaping of input line current-improved 3-phase utility interface-electromagnetic interference.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6106	ADVANCED ELECTRIC DRIVES	3-0-0-3	2015

Prerequisite: Attended course on Electric Drives [07EE 6105]

Course Objectives

To provide fundamental concepts in modeling of induction motors and synchronous machines and the advanced drive control schemes used in these machines

Syllabus

Basic principles for Electric Machine Analysis- Electro mechanical Energy conversion- Air gap MMF- Dynamic modeling of induction machines – 3-phase to 2-phase transformation – electromagnetic torque – derivation of stator reference frame model, rotor reference frame model, synchronously rotating reference frame model – dynamic model of synchronous machines-Vector controlled induction motor drive – Principle of vector or field oriented control –Indirect rotor flux oriented vector control scheme- Parameter sensitivity - Stator flux oriented vector controlled drives- Speed controller design-Flux weakening operation of vector controlled induction motor - Sensor less vector control schemes - Direct torque control of induction motor – control strategy - comparison of DTC and FOC –Permanent magnet synchronous machine drives – operating point and air gap line- radial and parallel magnetization - Modelling of PMSM – Vector control of PM synchronous machine – control strategies

Course Outcome

At the end of course, the student will be able to:

- Fundamental knowledge about electro mechanical energy conversion
- Dynamic analysis of different electrical machine
- Different methods of speed control of machines for good dynamic response

References

- 1. R Krishnan, "Electric Motor Drives", PHI, 2007
- 2. B K Bose, "Modern Power Electronics and AC Drives", PHI, 2006
- 3. P. C. Krause, Wasynczuk and Sudhoff, "Analysis of Electric Machinery and Drive Systems", Wiley, 2004
- 4. R Krishnan, "Permanent Magnet Synchronous and Brushless dc drives", CRC Press, 2010
- 5. D W Novotny and T A Lipo, "Vector Control and Dynamics of AC Drives", Oxford,1997
- 6. Ned Mohan, "Advanced Electric Drives", John Wiley, 2014
- 7. Joseph Vithayathil, "Power Electronics- Principles and Applications", TMH, 2010
- 8. W Leonhard, "Control of Electric Drives", Springer, 2001
- 9. C.M. Ong, "Dynamic simulation of Electric Machinery", Prentice Hall, 1998
- 10. A.M. Trzynadlowski, "Field orientation Principle in the control of Induction Motors, Kluwer

COURSE PLAN

COURSE NO: 07EE 6106 COURSE TITLE: ADVANCED ELECTRIC DRIVES (L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks:%
--------	----------	------------------	---------------------
I	Basic principles for Electric Machine Analysis- Magnetically coupled circuits- Electro mechanical Energy conversion- energy, co-energy and electromagnetic torque- Air gap MMF due to sinusoidal winding distribution- Dynamic modeling of induction machines – 3-phase to 2-phase transformation –power equivalence	6	15
-----	---	---	----
Π	generalized model in arbitrary reference frame – electromagnetic torque – derivation of stator reference frame model, rotor reference frame model, synchronously rotating reference frame model – dynamic model of synchronous machines-Vector controlled induction motor drive – Principle of vector or field oriented control – Comparison with separately excited dc motor- direct rotor flux oriented vector control – estimation of rotor flux and torque–Indirect rotor flux oriented vector control scheme	6	15
	FIRST INTERNAL EXAM		
III	Parameter sensitivity - Stator flux oriented vector control- decoupling requirements- implementation of vector control schemes with current source and current regulated inverters- implementation with voltage source inverters- decoupling- Typical applications of vector controlled drives- Speed controller design	6	15
IV	Flux weakening operation of vector controlled induction motor - flux weakening for stator and rotor flux orientation- comparison with dc motor torque capability curves- Sensor less vector control schemes- Speed estimation using slip calculation- Direct torque control of induction motor – control strategy - comparison of DTC and FOC	6	15
	SECOND INTERNAL EXAM		
V	Permanent magnet synchronous machine drives – types of permanent magnet and magnet characteristics– operating point and air gap line- radial and parallel magnetization- Halbach arrays- SPM and IPM machines- Modelling of PMSM	6	20
VI	Vector control of PM synchronous machine – control strategies – constant torque-angle control, unity power factor control, constant mutual flux-linkages control, optimum torque per ampere control, flux weakening operation, speed controller design	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

ELECTIVE II

Course N	No.	Course Name	L-T-P-Credits	Year of I	ntroduction
07EE 62	208	FLEXIBLE AC TRANSMISSION SYSTEMS	3-0-0-3	2	015
Prerequisi	te: Kn	owledge about power flow in inte	er connected sy	stems	
Course Ob	ojectiv	es			
Operation,	contro	ol and application of different FAC	TS devices		
Power-elec	etronic	controllers for active and reactive	power control i	n transmiss	ion lines
Synabus EACTS and	nrelim	inaries: FACTS concept and general	evetem considera	tions - nowe	r flow in ΔC
system - Sta	tic Sh	int Compensators - SVC and STATC	OM - Compensa	or Control -	Comparison
between SV	C and	STATCOM - STATCOM for transien	t and dynamic st	ability enhan	cement, case
studies. Star	tic Seri	es Compensation - GCSC, TSSC, T	CSC and SSSC	operation a	and control -
external sys	tem co	ntrol for series compensators - SSR a	and its damping -	static voltag	ge and phase
angle regula	ators - '	TCVR and TCPAR - operation and co	ontrol, case studi	es. UPFC an	d IPFC: The
Unified Pow	ver Flow	w Controller - operation, comparison w	vith other FACTS	devices - con	ntrol of P and
Q - dynamic	c perfor	mance - Special Purpose FACTS Con	trollers - Interline	Power Flow	Controller -
operation an	id conti	rol.			
At the end of	f cours	e the student will be able to:			
At the end of	w diffe	e, the student will be able to.			
• Kiic	annlic	ation of in power flow control voltage	control and stabi	ity improve	nent
References		autori of in power now control voltage	control and stabl	ity improver	liciti
1 NC	, 7 Hind	orani & L. Gyugyi <i>"Understandin</i>	g FACTS Conc	ents and Te	chnology of
Fle.	xible A	C Transmission Systems", IEEE P	ress	epis ana ie	enniene 8,9 eg
2. K. I	R. Pad	iyar, "FACTS Controllers in Power	r Transmission a	und Distribi	ution", New
Age	e Intern	national			
3. T.J.	E Mill	er, "Reactive Power Control in Ele	ectric Systems",	John Wiley	& Sons.
4. Nec	d Moha	an et.al, " <i>Power Electronics</i> ", John	Wiley and Son	\$. 1 1	••
5 Dr	Ashok	S & K S Suresh Kumar "FACIS	Controllers an	d applicati	ons' course
6 Pub	lished l	Literatures			
0 100	iisiicu i	Enteratures.			
		COURSE PLA	N		
COURSE	NO:	07EE 6208 COURSE TITLE	: FLEXIBLE A	C TRANS	MISSION
SYSTEMS					
(L-T-P: 3-0-0) CREDITS: 3					
Module		Contents		Contact	Sem.Exam
				Hours	Marks: %
	FACT	S and preliminaries: FACTS concept	ot and general		
Ι	syster	n considerations - power flow in	AC system -	6	15
	defini	tions on FACTS - basic types of FAC	TS controllers	-	_
	–dyna	ппс втаке			

п	Static Shunt Compensators - SVC and STATCOM - operation and control of TSC, TCR, STATCOM - Compensator Control - Comparison between SVC and STATCOM - STATCOM for transient and dynamic stability enhancement, case studies	6	15
	FIRST INTERNAL EXAM		
III	Static Series Compensators: Static Series Compensation - GCSC, TSSC, TCSC and SSSC - operation and control - external system control for series compensators	6	15
IV	SSR and its damping - static voltage and phase angle regulators - TCVR and TCPAR - operation and control, case studies	6	15
	SECOND INTERNAL EXAM		
V	UPFC and IPFC: The Unified Power Flow Controller - operation, comparison with other FACTS devices - control of P and Q - dynamic performance	6	20
VI	Special Purpose FACTS Controllers - Interline Power Flow Controller - operation and control – case studies	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	- 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction	
07EE 6118	DESIGN OF POWER ELECTRONICS SYSTEM	3-0-0-3	2015	
Prerequisite: Attended course on Analysis of Power Electronic Circuits I – [07EE 6103]				

Course Objectives

Design gating drive circuits for switching devices with isolation. Design snubber circuits and heat sinks for switching devices. Design inductor and transformer operating at high frequency.

Syllabus

Design of Gate and Base Drive Circuits: Transistor base drive circuits - Thyristor drive circuits - layout considerations. Snubber circuits –diode, thyristor and Transistor snubber circuits, turn off and turn-on snubber, overvoltage snubber, snubber for bridge circuit configurations, GTO snubber considerations. Cooling and Design of heat sinks: Control of device temperature, heat transfer by conduction, heat sinks, heat transfer by radiation and convection- Design of Magnetic components: Magnetic materials and core, copper windings, thermal considerations, inductor design analysis and procedure, transformer design, leakage inductance, comparison of sizes of transformer and inductor - Demonstration design of converter circuits, 3 phase rectifier. Buck converter, boost converter.

Course Outcome

At the end of course, the student will be able to:

- Select power electronic devices and drive circuits for a system
- Select appropriate snubber circuit
- Design transformer and inductor used in power circuit
- Select cooling methods & heat sink for power devices
- Design a power circuit for AC-DC and DC-DC power converter

References

- 1. Ned Mohan, Tore M. Undeland and William P.Riobbins, "Power Electronics— Converters, Applications and Design" Third Edition, John Wiley and Sons. Inc2014
- 2. Muhammad H. Rashid, "Power Electronics, Circuits, Devices and Application" Third Edition, Prentice Hall of India Private Limited, 2004
- 3. Joseph Vithayathil, "Power Electronics-Principle and Applications", Tata McGraw Hill Education Pvt Ltd, 2010.
- 4. Barry W. Williams, "Principles of Electments of Power Electronics Deviceses, Drivers, Applications and Passive Components", Barry W. Williams, 2006.
- 5. Daniel W. Hart, "Power Electronics", Tata McGraw Hill, 2011.

COURSE PLAN COURSE NO: 07EE 6118 COURSE TITLE: DESIGN OF POWER ELECTRONICS SYSTEM

(L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks: %
--------	----------	------------------	----------------------

I	Design of Gate and Base Drive Circuits: Design consideration, dc – coupled drive circuits isolated drive circuits, cascade-connected drive circuits Thyristor drive circuits power device protection in drive circuits layout considerations.	6	15
Π	Snubber circuits: Function and type of Snubber circuits, diode snubbers thyristor snubber circuits, Transistor snubber circuits	6	15
	FIRST INTERNAL EXAM		
III	Turn off and turn-on snubber, overvoltage snubber, snubber for bridge circuit configurations, GTO snubber considerations.	6	15
IV	Cooling and Design of heat sinks: Control of device temperature, heat transfer by conduction, heat sinks, heat transfer by radiation and convection.	6	15
	SECOND INTERNAL EXAM		
V	Design of Magnetic components: Magnetic materials and core, copper windings, thermal considerations, inductor design analysis and procedure, transformer design, eddy currents, leakage inductance, transformer design, comparison of sizes of transformer and inductor	6	20
VI	Demonstration design of converter circuits, 3 phase rectifier. Buck converter, boost converter.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	- 15 Marks
Second Internal Test	- 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6128	NONLINEAR CONTROL SYSTEMS	3-0-0-3	2015
Prerequisite: Attended course on System Dynamics – [07EE 6201]			

Course Objectives

To study the characteristics and analysis of nonlinear systems using phase plane and describing function method

To understand the concept of Lyapunov stability and linearization procedures To familiarize the advanced control techniques: sliding mode, back stepping

Syllabus

Introduction and classical techniques: Characteristics of nonlinear systems - phase plane analysis - describing function - Single input Describing Function (SIDF). Lyapunov Stability and Design: Stability of Nonlinear Systems- Lyapunov stability - local stability - Direct method of Lyapunov – Centre manifold theorem - Invariance theorems - Input output stability - Lyapunov based design. Feedback Control and Feedback Stabilization : Circle Criterion - Popov Criterion - simultaneous Lyapunov functions - Feedback linearization - stabilization - regulation via integral control - gain scheduling - input state linearization - input output linearization - state feedback control - Nonlinear Design Tools: Sliding Mode Control- Concept of variable - implementation of switching control laws. Reduction of chattering in sliding mode, Lyapunov Redesign: Stabilization-Nonlinear Damping.

Course Outcome

At the end of course, the student will be able to:

- Analysis non-linear control system
- Learn feedback control methods
- Examine stability of the system

References

- 1. Hassan K Khalil, "Nonlinear Systems", Prentice Hall International (UK) 1996
- 2. Slotine & W.LI, "*Applied Nonlinear Control*", Prentice Hall, Engloe wood NewJersey 1991
- 3. A Isidori, "Nonlinear Control Systems", Springer verlag New York 1995
- 4. C Edwards, S Spurgeon, "Sliding Mode Control", Theory and Applications, CRC Press, 1998.
- 5. V. Utkin, J Guldner, J Shi, "Sliding Mode Control in Electro Mechanical Systems", CRC Press, 2009.

COURSE PLAN

COURSE NO: 07EE 6128 COURSE TITLE: NONLINEAR CONTROL SYSTEMS

(L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks
Ι	Introduction and classical techniques : Characteristics of nonlinear systems - classification of equilibrium points - limit cycles - analysis of systems with piecewise constant inputs using phase plane analysis - describing function of standard nonlinearities- study of limit cycles (amplitude and frequency) using Single input Describing Function(SIDF).	б	15
II	Lyapunov Stability and Design : Stability of Nonlinear Systems- Lyapunov stability - local stability - local linearization and stability in the small - Direct method of Lyapunov - generation of Lyapunov function for linear and nonlinear systems –	6	15
	FIRST INTERNAL EXAM		
III	variable gradient method - Centre manifold theorem - region of attraction - Invariance theorems - Input output stability - L stability - L stability of state models - L2 stability- Lyapunov based design	6	15
IV	Feedback Control and Feedback Stabilization : Analysis of feedback systems-Circle Criterion - Popov Criterion - simultaneous Lyapunov functions - Feedback linearization - stabilization - regulation via integral control	6	15
	SECOND INTERNAL EXAM		
V	gain scheduling - input state linearization - input output linearization - state feedback control - stabilization - tracking - integral control	6	20
VI	Nonlinear Design Tools: Sliding Mode Control- Concept of variable - structure controller and sliding control, reaching condition and reaching mode, existence condition-implementation of switching control laws. Reduction of chattering in sliding mode, Lyapunov Redesign: Stabilization-Nonlinear Damping, Back stepping Control.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6138	COMPUTER AIDED DESIGN OF ELECTRICAL MACHINES	3-0-0-3	2015
Prerequisite: Kn	owledge about design of electrica	al machines	
Course Objectiv	es		
To introduce the	technique of Finite Element Metho	ds in the area of e	electrical machines
Svllabus	1 0	5	
Computer aided de Formulation of Fie - Stored energy in f - Principle of ener Method - Energy m Packages - Setting Induction Motor - S	esign of electrical machines - Analys ld Problems-Development of torque/f ield problems – Inductances - Laplace gy conversion. Philosophy of FEM- inimization - Variational method - 2D up solution - Postprocessing. Design Switched Reluctance Motor – Synchro	is and synthesis me force - E - Electrical and Poisson's Equat Finite Difference n Field problems - So Applications-Design onous Machines.	ethods Mathematical l Vector/Scalar potential tions - Energy functional nethod - Finite Element olution techniques. CAD n of Solenoid Actuator -
Course Outcome			
At the end of cours	e, the student will be able to:		
Basic conc	ept of electric machine		
Apply FEN	A methods for field plotting		
Design ele	ctromagnetic machines		
References			
 S J Salon, Publishers, Vlado Ostov Silvester a University I S R H Hoo Elsevier198 D A Lowthe New York. M Ramamo West Press. C W Trowl Vector Field Chee-Mun MATLAB/S. User Manua 10. Chee-Mun MATLAB/S. 	"Finite Element Analysis of Ele London, 1995. vic, "Computer Aided Analysis of E nd Ferrari, "Finite Elements f Press, 1983. le, "Computer-Aided, Analysis and 9. er, P P Silvester, "Computer Aided orthy, "Computer Aided Design of oridge, "An Introduction to Comp d Ltd. Ong, "Dynamic Simulations IMULINK", Prentice Hall, 1998. als of Software Packages like MAC Ong, "Dynamic Simulations IMULINK", Prentice Hall, 1998.	ectrical Machines Electric Machines' For Electrical En d Design of Elect Design in Magnet Electrical Equipt outer Aided Electric of Electric GNET, ANSOFT& of Electric	", Kluwer Academic , PHI (UK) Ltd, 1994. <i>ngineer</i> ", Cambridge <i>romagnetic Devices</i> ", <i>tics</i> ", Springer Verlag, nents", Affiliated East <i>romagnetic Analysis</i> ", <i>Machinery: Using</i> <i>ANSYS.</i> <i>Machinery: Using</i>

COURSE PLAN COURSE NO: 07EE 6138 COURSE TITLE: COMPUTER AIDED DESIGN OF ELECTRICAL MACHINES (L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks: %
Ι	Computer aided design of electrical machines - Conventional design procedures - Analysis and synthesis methods - Limitations - Need for field analysis based design Mathematical Formulation of Field Problems- Development of torque/force - Electromagnetic Field Equations - Magnetic Vector/Scalar- potential	6	15
Π	Electrical Vector/Scalar potential - Stored energy in field problems – Inductances - Laplace and Poisson's Equations - Energy functional - Principle of energy conversion.	6	15
	FIRST INTERNAL EXAM		
III	Philosophy of FEM- Mathematical Models - Differential/Integral equations - Finite Difference method - Finite Element Method	6	15
IV	Energy minimization - Variational method - 2D Field problems - Discretisation- Shape functions - Stiffness matrix - Solution techniques.	6	15
	SECOND INTERNAL EXAM		
V	CAD Packages-Elements of a CAD System - Preprocessing - Modeling - Meshing -Material properties - Boundary Conditions - Setting up solution - Postprocessing.	6	20
VI	Design Applications-Design of Solenoid Actuator - Induction Motor - Switched Reluctance Motor - Synchronous Machines-case studies.	6	20

Internal Continuous Assessment: 40 marks

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

ELECTIVES III

Course N	lo.	Course Name	L-T-P-Credits	Year of I	ntroduction
07EE 61	12	INDUSTRIAL CONTROL ELECTRONICS	3-0-0-3	2	2015
Prerequisit	te: Kn	owledge in Analog and Digital Ele	ctronics		
Course Ob	jectiv	es			
To gives a c combines th the controll	compre ne ana lers. M	chensive coverage of various contro log and digital concepts together v licrocontrollers and Digital Signal	ol electronics us vith Power Elec processors for	ed in the ind tronics for t control app	ustries. This he design of lications
Syllabus					
Analog Cor programmab control - inte barcode in i Basic build application c unit sine way	ntroller ole logic errupte ndustry ing bl levelop ve gene	s - Proportional controllers, Digit c controllers. Signal conditioners- Isol r modules and photo sensors; Fiber-o y. Introduction to microprocessors, n ocks, architecture ofTMS320LF 28 oment, PI controller, Clarks and Park eration.	al control sche ation circuits –O optics; Bar code nicrocontrollers, 3xx DSP, instru transformation, F	mes, control pto-Electroni- equipment, a Digital Signa ction set, p WM generat	algorithms, c devices and pplication of l Processors. rogramming, ion, PLL and
Course Out	come				
At the end of Desi Sele Use Prov	f cours ign of I ct suita of DSI vide ele	e, the student will be able to: PE based system able power devices and feedback circu P for control applications ectric isolation of power & drive circu	it elements		
References	;				
 Mic Hal Tho Jam Tol Con TM App <u>ww</u> 	chael J. 1, 1995 omas E nes Ma iyat, H <i>utrol</i> ", S 320 oblicatio	acob, "Industrial Control Electroni 5. 2. Kissell, "Industrial Electronics", as, "Industrial Electronics", Prent Hamid A. and SlevenCampell, " CRC Press 2003. F 240 Technical Reference Manr on notes on DSP based Motor Cont 2	<i>ics – Application</i> Prentice Hall I ice Hall, 1995. <i>DSP Based El</i> nual. trol.	ns and Desig ndia, 2003 ectomechan	m", Prentice
		COURSE PLA	N		
COUF	RSE N	O: 07EE 6112 COURSE TIT	TLE: INDUST	RIAL CON	TROL
		ELECTRONI (L-T-P: 3-0-0) CF	CS REDITS: 3		
Module		Contents		Contact Hours	Sem.Exam Marks:%

I	Analog Controllers - Proportional controllers, Proportional – Integral controllers, PID Controllers, derivative overrun, integral windup, cascaded control, Feed forward control	6	15
Ш	Digital control schemes, control algorithms, programmable logic controllers. Signal conditioners- Instrumentation amplifiers – voltage to current, current to voltage, voltage to frequency, frequency to voltage converters	6	15
	FIRST INTERNAL EXAM		
III	Isolation circuits – cabling; magnetic and electro static shielding and grounding.	6	15
IV	Opto-Electronic devices and control, electronic circuits for photo-electric switches-output signals for photo-electric controls; Applications of opto-isolation	6	15
	SECOND INTERNAL EXAM		
V	Interrupter modules and photo sensors; Fiber-optics; Bar code equipment, application of barcode in industry.	6	20
VI	Introduction to microprocessors, microcontrollers, Digital Signal Processors. Basic building blocks, architecture ofTMS320LF 28xx DSP, instruction set, programming, application development, PI controller, Clarks and Park transformation, PWM generation, PLL and unit sine wave generation.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6122	RENEWABLE ENERGY TECHNOLOGIES	3-0-0-3	2015

Prerequisite: Nil

Course Objectives

To study the various renewable energy sources and related power conversion technologies **Syllabus**

Renewable energy Sources: classification of RE technologies – stand alone, hybrid and grid – connected; Recent developments in renewable energy sector- global and national energy policies - Wind energy- Global and local winds, resource assessment –Weibull parameters; WEG technologies for grid connection. Solar energy –PV cell-principle, types and construction; modeling of PV cell, Maximum power tracking; SPV systems – stand alone and grid-connected. Other renewable energy technologies; Biomass – gasifiers; small hydro-resource assessment, selection of turbines, Electronic load controller; Wave, Tidal, Ocean thermal and Geothermal energy systems – principles and technologies; Energy storage systems.

Course Outcome

At the end of course, the student will be able to:

- Know different types of renewable energy source
- Economic aspects of utilization by converting to electric energy

References

- 1. Thomas B Johansson, "Renewable Energy: Sources for Fuels and Electricity", Island Press, Washington, 1993
- 2. John W Twidell and A D Weir, "Renewable Energy Sources", ELBS, 1986
- 3. N K Bansal, M Kleeman and M Mellis , *"Renewable Energy Resources and Conversion Technology"*, Tata McGraw Hill , 1990
- 4. S N Bhadra, D Kastha and S Banarji, "Wind Electrical Systems", Oxford University Press, 2005

COURSE PLAN

COURSE NO: 07EE 6122 COURSE TITLE: RENEWABLE ENERGY TECHNOLOGIES

(L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks
Ι	Renewable energy Sources: Renewable energy utilization in ancient times, classification of RE technologies – stand alone, hybrid and grid –connected; Recent developments in renewable energy sector- global and national energy policies	6	15

II	Wind energy- Global and local winds, resource assessment, wind regime modeling –Weibull parameters; WEG technologies for grid connection.	6	15
	FIRST INTERNAL EXAM		
III	Solar energy – Solar radiation and measurements; PV cell- principle, types and construction; modeling of PV cell, Maximum power tracking	6	15
IV	SPV systems – stand alone and grid-connected.	6	15
	SECOND INTERNAL EXAM		
V	Other renewable energy technologies; Biomass – gasifiers;	6	20
VI	Small hydro-resource assessment, selection of turbines, Electronic load controller; Wave, Tidal, Ocean thermal and Geothermal energy systems – principles and technologies; Energy storage systems.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6132	OPTIMAL AND ADAPTIVE CONTROL SYSTEMS	3-0-0-3	2015
Prerequisite: Kn	owledge about in Control system	n engineering	
Course Objectiv	es		
The course aims problem and diffe	to give an overview of the optime erent solution methods.	mal control prob	lem, adaptive control
Syllabus			

Syllabus

Optimal control problem: open loop and closed loop form of optimal control- fundamental concepts and theorems of calculus of variations - function and functional - Lagrange equation and solutionextremal of functionals of several independent functions - various boundary condition equations -The variational approach to solve optimal control problems - Different boundary condition equations for solving the optimal control problem - closed loop control for linear regulator problem -Pontryagin's minimum principle - state inequality constraints - Dynamic programming: principle of optimality – application to optimal control problem – need for interpolation - curse of dimensionality - discrete linear regulator problem - Model Reference Adaptive systems (MRAS): mathematical description of MRAS - design hypothesis - equivalent representation of MRAS

Course Outcome

At the end of course, the student will be able to:

- Know about optimal control problem
- Application of adaptive control
- Solution methods in optimal control problem

References

- 1. Donald E. Kirk, "Optimal Control Theory, An introduction", Prentice Hall Inc., 2004
- 2. A.P. Sage, "Optimum Systems Control", Prentice Hall, 1977
- 3. HSU and Meyer, "Modern Control, Principles and Applications", McGraw Hill, 1968
- 4. Yoan D. Landu, "Adaptive Control" (Model Reference Approach), Marcel Dekker. 1981
- 5. K.K.D.Young, "Design of Variable Structure Model Following Control Systems", IEEE Transactions on Automatic Control, Vol. 23, pp 1079-1085, 1978.
- 6. A.S.I. Zinobar, O.M.E. EI-Ghezawi and S.A. Billings, "Multivariable variable structure adaptive model following control systems". Proc. IEE., Vol. 129, Pt.D., No.1, pp 6-12, 1982

COURSE PLAN COURSE NO: 07EE 6132 COURSE TITLE: OPTIMAL AND ADAPTIVE CONTROL SYSTEMS (L-T-P: 3-0-0) **CREDITS: 3**

Hours Marks: %

I	Optimal control problem: open loop and closed loop form of optimal control- performance measures for optimal control problems – general form of performance measure - fundamental concepts and theorems of calculus of variations – function and functional	6	15
П	Extremal of functionals of a single function - Euler - Lagrange equation and solution- extremal of functionals of several independent functions – various boundary condition equations - piecewise-smooth extremals - extremal of functionals with dependent functions.	6	15
	FIRST INTERNAL EXAM		
III	The variational approach to solve optimal control problems: necessary conditions for optimal control using Hamiltonian – Different boundary condition equations for solving the optimal control problem – closed loop control for linear regulator problem - linear tracking problem – Pontryagin's minimum principle - state inequality constraints - minimum time problems – minimum control effort problems.	6	15
IV	Dynamic programming: principle of optimality - application to multi stage decision making – application to optimal control problem – need for interpolation - recurrence relation of dynamic programming - curse of dimensionality	6	15
	SECOND INTERNAL EXAM		
V	Discrete linear regulator problem - Hamilton-Jacobi- Bellman equation - continuous linear regulator problem.	6	20
VI	Model Reference Adaptive systems (MRAS): the need for MRAS - an over view of adaptive control systems - mathematical description of MRAS - design hypothesis - equivalent representation of MRAS - introduction to design method based on the use of Lyapunov function – case studies	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction		
07EE 6142	07EE 6142ROBOTICS AND AUTOMATION3-0-0-32015				
Prerequisite: Fui	ndamental concepts of control er	ngineering and p	rogramming		
language					
Course Objectiv	es				
To study the varie	ous technologies in the field of robo	otics and automat	ion		
Syllabus					
Geometric configu applications – Intro Homogenous trans Robot Arm Dynam Manipulator Traje Cartesian path traje	uration of robots - Control system oduction to robotic vision. Robot Arm formation – Denavit Hattenberg repr nics- joint velocities – Kinetic energy ctories- General consideration on ectories- Control of Robot Manipulato	s – Robot progra Kinematics- Comp esentation and vari – Potential energy a trajectory planning rs- PID control con	Imming languages and osite rotation matrices – ous arm configurations. and motion- Planning of g joint interpolation & nputed, torque technique		
Course Outcome					
At the end of cours Understand Mathematic Plan Trajed References 1. Fu K S, O Intelligend 2. Wesley, E 1985. 3. Asada and 4. Philippe O INC, 1981 5. Saeed B Pearson E 6. Groover M Applicatio 7. Sciavicco Springer V 8. Gray J O, Institution	e, the student will be able to: I robot kinematics cal description of arm control tories of robots Gonazlez R C and Lee C S G, "I ce)", McGraw-Hill, 1987. Sryda, "Industrial Robots: Com I Slotine, "Robot Analysis and Cor Coiffet, "Robot Technology, Vol. II I. Niku, "Introduction to Robotics, ducation, 2002. M P, Mitchell Wesis, "Industrial Fors", Tata McGraw-Hill, 1986. L, B Siciliano, "Modeling & Control Verlag, 2000. D G Caldwell (Ed), "Advanced I of Electrical Engineers, UK, 1996	Robotics (Control uputer Interfacing utrol", John Wiley (Modeling and Co Analysis, System Robotics Technolo rol of Robot Mani, Robotics & Intell	, Sensing, Vision and and Control" PHI, y and Sons, 1986. ontrol)", Prentice Hall as and Applications", ogy Programming and pulators", 2 nd Edition, igent Machines", The		
9. Craig John	a J, "Introduction to Robotics: Med	chanics and Contr	<i>ol</i> ", Pearson, 1989.		
COURSE NO: (COURSE PLA)7EE 6142 COURSE TITLE (L-T-P: 3-0-0) CH	AN : ROBOTICS Al REDITS: 3	ND AUTOMATION		

Module	Contents	Contact Hours	Sem.Exam Marks: %
Ι	Geometric configuration of robots – Manipulators – Drive systems – Internal and external sensors – End effectors – Control systems – Robot programming languages and applications	6	15
Ш	Introduction to robotic vision. Robot Arm Kinematics- Direct and inverse kinematics – Rotation matrices – Composite rotation matrices – Euler angle- representation	6	15
	FIRST INTERNAL EXAM		
III	Homogenous transformation – Denavit Hattenberg representation and various arm configurations.	6	15
IV	Robot Arm Dynamics- Lagrange – Euler formulation, joint velocities – Kinetic energy – Potential energy and motion- equations – Generalized D'Alembert equations of motion.	6	15
	SECOND INTERNAL EXAM		
V	Planning of Manipulator Trajectories- General consideration on trajectory planning joint interpolation & Cartesian path trajectories- Control of Robot Manipulators- PID control computed, torque technique	6	20
VI	Near minimum time control – Variable structure-control – Non-linear decoupled feedback control – Resolved motion control and adaptive control.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	- 15 Marks
Second Internal Test	- 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6114	MINI PROJECT	0-0-2-2	2015

Course Objectives

To estimate the ability of the student in transforming the theoretical knowledge studied so far into a working model of a power electronic system.

For enabling the students to gain experience in organisation and implementation of a mini project and thus acquire the necessary confidence to carry out hardware implementation of main project.

Syllabus

This is a hardware based mini project and each student is expected to fabricate a power electronic based system having practical applications. This should be a working model. Student has to design, fabricate, assemble and test power electronics based system, mount on an enclosure with appropriate terminals and controls. The PCB layout should be done by using any standard PCB design software. Proper heat sinking, EMI and protection features are also to be incorporated. Use of SMD devices is encouraged. The basic concepts of product design may be taken into consideration while designing the project.

Internal continuous assessment: 100 marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6116	ADVANCED POWER ELECTRONICS LAB	0-0-2-1	2015

Prerequisite: Attended courses on Analysis of Power Electronic Circuits I – [07EE 6103] and Electric Drives – [07EE 6105]

Course Objectives

To provide practical knowledge through hardware implementation & simulation of power electronic circuits

List of Exercises / Experiments

- 1. Speed control of converter fed DC motor drives using PWM generation block in microcontroller/DSP/FPGA
- 2. Open loop and closed loop speed control of chopper fed DC motor drives using Microcontroller/DSP/FPGA
- 3. Single phase sine-triangle PWM and SVPWM generation using Microcontroller/DSP/FPGA
- 4. Dead time generation to avoid shoot-through fault using Microcontroller/DSP/FPGA
- 5. Single phase VSI feeding RL load using sine-triangle PWM with proper isolation and fault protection
- 6. Single phase Hysteresis current control of VSI feeding an inductive load
- 7. VSI fed three phase induction motor drive using open loop V/f control controlled by Microcontroller/DSP/FPGA
- 8. Fly back converter design and implementation
- 9. Forward converter design and implementation
- 10. Closed loop voltage control of switching regulators controlled by Microcontroller/DSP/FPGA
- 11. Simulation of free acceleration characteristics of 3-phase induction motor
- 12. Simulation of Vector control of 3-phase induction motor
- 13. Simulation of Direct Torque Control of 3-phase induction motor
- 14. Simulation of vector control of PMSM
- 15. Simulation of STATCOM & DSTATCOM
- 16. Simulation of Active Power Filter, DVR
- 17. Simulation of TCSC, UPQC
- 18. Simulation of PWM rectifier
- 19. Simulation of a separately excited DC motor drive with PI control design using symmetrical optimum method
- 20. Simulation Study on the switching and conduction power losses in generic power electronic converters

(Out of the above, a minimum of SIX hardware experiments are to be conducted and at least and FOUR simulation assignments are to be given. Simulations of the hardware experiments are also recommended and comparison of hardware results with the simulation result is encouraged. Simulation can be done using any of the software packages like MATLAB/SIMULINK, ORCAD, PSCAD etc.)

- i) Practical Records /outputs 40%
- ii) Regular Class Viva-Voce 20%
- iii) Final Test (Objective) 40%

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 6124	SEMINAR I	0-0-2-2	2015

Course Objectives

To assess the debating capability of the student to present a technical topic. Also to impart training to a student to face audience and present his ideas and thus creating in him self-esteem and courage that are essential for an engineer.

Syllabus

Individual students are required to choose a topic of their interest from power electronic related topics preferably from outside the M.Tech syllabus. And give a seminar on that topic about 45 minutes. By the end of the semester student will demonstrate the simulation of system/circuit presented A committee consisting of at least three faculty members (preferably specialized in power electronics) shall assess the presentation of the seminar and award marks to the students based on merits of topic of presentation. Each student shall submit two copies of a write up of his seminar topic. One copy shall be returned to the student after duly certifying it by the chairman of the assessing committee and the other will be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation and Simulations.

Internal Continuous Assessment: 100 marks

- i) Marks for the report: 30%
- ii) Presentation: 40%
- iii) Ability to answer questions on the topic: 30%

SEMESTER 3

ELECTIVES IV

Course No.	Course Name	L-T-P-Credits	Year of Introduction			
07EE 7101	DIGITAL CONTROL SYSTEMS	3-0-0-3	2015			
Prerequisite: Att	ended course on System Dynamics	s –[07EE 6201]				
Course Objectiv	es					
To familiarise dig	gital controllers.					
To understand the	e analysis and design of digital cor	ntrol system.				
Syllabus						
Introduction to dis	crete time control system- Sampling	process- hold circi	uits-Zero and first order			
hold- Review of z	- transforms and inverse z- transform	ns- solution of diff	ference equations- pulse			
transfer function- H	Realization of pulse transfer functions	(Digital Controlle	ers)- Review of stability			
analysis in z-plane	- Transient and Steady state response a	nalysis - frequency	response specifications-			
Nyquist stability cr	iterion in the z- plane- Digital Control	llers- Lag, lead, and	l lag-lead compensators-			
State Space analys	is of digital control systems Trans	fer function from s	state model- Solution of			
linear time invarian	nt discrete time state equations-Conce	pt of controllability	y and observability for a			
inear time invariar	it discrete time control system					
Course Outcome						
At the end of cours	e, the student will be able to:					
Familiarize	e with digital controller					
Capable of	designing digital control system satis	fying output specif	ications			
Familiar w	ith physical digital control systems					
References						
1. K. Ogata	. "Discrete- time Control Systems"	'. PHI				
2. M. Gopa	l, "Digital Control and State Varia	ble Methods", Ta	ta McGraw Hill			
3. B. C. Ku	no, "Digital Control Systems", Pren	ntice Hall				
4. Charles I	4. Charles L. Philip and Troy Nagle, "Digital Control Systems", Prentice Hall					

COURSE PLAN COURSE NO: 07EE 7101 (L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks: %
Ι	Introduction to discrete time control system- Block diagram of a digital control system-Typical examples- Sampling process- Data reconstruction and hold circuits- Zero and first order hold- Review of z- transforms and inverse z- transforms- solution of difference equations- pulse transfer function- pulse transfer function with dead time- system time response	6	15
Π	Realization of pulse transfer functions (Digital Controllers) - Direct Programming- Standard Programming- Series programming- parallel programming- ladder programming. Review of stability analysis in z- plane- Jury's stability test and extension of Routh's stability criterion to discrete systems-	6	15
	FIRST INTERNAL EXAM		
III	Transient and Steady state response analysis- transient response specifications- steady state error analysis- Construction of root loci- effect of sampling period on transient response specifications- frequency response specifications- Nyquist stability criterion in the z- plane- Digital Controllers- PI, PD & PID Controllers	6	15
IV	Lag, lead, and lag-lead compensators- Design of lag compensator and lead compensator based on root locus and Bode plot approaches.State Space analysis of digital control systems- state space representation of discrete time systems	6	15
	SECOND INTERNAL EXAM		
V	Transfer function from state model- Diagonal/ Jordan Canonical forms from transfer function- Solution of linear time invariant discrete time state equations- discretization of continuous time space equation- representing state models in CCF, OCF, DCF/ JCF using transformation matrix.	6	20
VI	Concept of controllability and observability for a linear time invariant discrete time control system- condition for controllability and observability- state feedback- condition for arbitrary pole placement- design vi a pole placement- state observers- design of full order state observer- case studies	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	- 15 Marks
Second Internal Test	- 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

End Semester Examination: 60 marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 7211	POWER QUALITY	3-0-0-3	2015

Prerequisite: Knowledge in signal processing and power system engineering

Course Objectives

To familiarize with power quality problems and measurements.

To study the impact of and on the device and different mitigation techniques, application of custom power devices

Syllabus

Overview of power quality phenomena-classification of power quality issues-power quality measures and standards- Harmonics -IEEE guides, standards and recommended practices. Power factor reduction due to harmonics- Loads that cause power quality problems-Power Quality Measurement and Analysis - event recorders, Measurement Error – Analysis: Analysis in the periodic steady state, Time domain methods, Frequency domain methods: Laplace's, Fourier and Wavelet Transform.Utility-Customer interface –Harmonic filters: passive, Active and hybrid filters –Custom Power devices: Network reconfiguring Devices, Load compensation, Voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC –control strategies: - series active power filtering techniques for harmonic cancellation and isolation – case studies

Course Outcome

At the end of course, the student will be able to:

- Know about power quality issues
- Cause of poor power quality
- Understand mitigation techniques

References

- 1. Arindam Ghosh "Power Quality Enhancement Using Custom Power Devices", Kluwer, Academic Publishers
- 2. Heydt, G.T., "Electric Power Quality", Stars in a Circle Publications, Indiana

- 3. R Sastry Vedam, "Power Quality VAR compensation in Power Systems", CRC press,NewYork,2009
- 4. R.C. Duggan, "Power Quality"
- 5. A.J. Arrillga, "Power System Harmonics"
- 6. Derek A. Paice, "Power electronic converter harmonics"
- 7. Ewald F Fuchs, Mohammad A.S., "Power Quality in Power Systems and Electrical Machines", Elsevier, Academic Press
- 8. Bollen, M.H.J., "Understanding Power Quality Problems: Voltage sags and interruptions", IEEE Press, New York
- 9. Arrillaga. J, Watson, N.R., Chen, S., "Power System Quality Assessment", Wiley, New York, 2000.

COURSE PLAN

COURSE NO: 07EE 7211 COURSE TITLE: POWER QUALITY (L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks: %
Ι	Overview of power quality phenomena-classification of power quality issues-power quality measures and standards-flicker-transient phenomena- THD-TIF-DIN-C message weights-flicker factor. Harmonics -sources of harmonics-occurrence of power quality problems-power acceptability curves-IEEE guides, standards and recommended practices. IEEE Standard 1459: Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. Awareness of IEEE Standard 519 and IEEE 1159	6	15
П	Power factor reduction due to harmonics-Distortion power-distortion power factor and displacement power factor. Loads that cause power quality problems-power quality problems created by drives and its impact on drives - case studies	6	15
	FIRST INTERNAL EXAM		
III	Single phase AC/DC converters, SMPS, three phase AC/DC converters, Battery chargers, Arc furnaces, Fluorescent lighting, pulse modulated devices, Adjustable speed drives.	6	15
IV	Power Quality Measurement and Analysis -Voltage, Current, Power and Energy measurements, power factor measurements and definitions, event recorders, Measurement Error – Analysis: Analysis in the periodic steady state, Time domain methods Harmonics extraction techniques- Selective Harmonics Extraction and its need- shunt active power filtering techniques	6	15
SECOND INTERNAL EXAM			

V	Frequency domain methods: Laplace's, Fourier and Wavelet Transform. Utility-Customer interface – Harmonic filters: passive, Active and hybrid filters	6	20
VI	Custom Power devices: Network reconfiguring Devices, Load compensation using DSTATCOM, Voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC –control strategies: P-Q theory, Synchronous detection method - series active power filtering techniques for harmonic cancellation and isolation - case studies.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

End Semester Examination: 60 marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction	
07EE 7121	INDUSTRIAL INSTRUMENTATION	3-0-0-3	2015	
Prerequisite: Bas	sic idea about instrumentation a	nd control		
Course Objectives To create an awareness of the different transducers used in industry and signal conditioning				
<i>To familiarize the process control elements and their control characteristics</i> Syllabus				
Signal Conditioning – Process Control Principles - Identification of elements, stability, regulation, evaluation criteria, and cyclic response. Final Control Element: Final control operation, signal conversions, digital electrical signals, Direct action – pneumatic signals, Actuators – fluid valves.				

conversions, digital electrical signals, Direct action – pneumatic signals, Actuators – fluid valves. Signal Conditioning of Transducers- Controller Principles - Process characteristics, control system parameters, controller modes. Analog Controllers – Direct action, reverse action, proportional mode, integral mode, derivative mode, composite controller modes - Pneumatic controllers – implementation of PI, PID, PD - Design consideration. Control Loop Characteristics: Control system configurations, Adaptive control, control system quality – loop disturbance, optimum control, Stability.

Course Outcome

At the end of course, the student will be able to:

- Know about transduces used in industrial instrumentation
- Signal conditioning Techniques
- Apply in process control

References

- 1. Curtis D. Johnson, "Process Control Instrumentation Technology", Pearson Education
- 2. Curtis D. Johnson, "Microprocessors in Process Control", PHI
- 3. George Stephanopoulis, "Chemical Process Control"
- 4. Caughner, "Process Analysis and Control"
- 5. Deshpande and Ash, "Elements of computer process control of Industrial processes", ISA
- 6. Jayantha K. Paul, "*Real- Time microcomputer control of Industrial processes*", Kluwer Publications, Netherlands
- 7. S. K. Singh, "Computer Aided Process Control", PHI
- 8. Dale E. Seborg, Thomas F. Edgar, Duncan A. Mekkichamp, "Process Dynamics and Control", Wiley India

COURSE PLAN

COURSE NO: 07EE 7121 COURSE TITLE: INDUSTRIAL INSTRUMENTATION

(L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks: %
Ι	Signal Conditioning – Analog – Digital - Signal conversions - Process Control Principles - Identification of elements, block diagram, the loop, control system evaluation	6	15
Π	Stability, regulation, evaluation criteria, and cyclic response. Final Control Element: Final control operation, signal conversions, analog electrical signal, digital electrical signals - case studies.	6	15
FIRST INTERNAL EXAM			
III	Direct action – pneumatic signals, Actuators – electrical actuators, pneumatic actuators, control elements – fluid valves. Signal Conditioning of Transducers- Temperature Transducers - flow transducers.	6	15
IV	Controller Principles - Process characteristics, control system parameters, controller modes, discontinuous controller modes, continuous controller modes, composite controller modes.	6	15
SECOND INTERNAL EXAM			

V	Analog Controllers - Electronic controller – Direct action, reverse action, proportional mode, integral mode, derivative mode, composite controller modes - Pneumatic controllers – implementation of PI, PID, PD - Design consideration.	6	20
VI	Control Loop Characteristics: Control system configurations, cascade control, multivariable control, feed forward control, Split range control, inferential control, Adaptive control, control system quality – loop disturbance, optimum control, measure of quality, Stability, process loop tuning - case studies.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	- 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 7131	DIGITAL SIGNAL PROCESSORS	3-0-0-3	2015

Prerequisite: Concept about microcontrollers and Signals & Systems

Course Objectives

To familiarize the student the use digital processors for mathematical processing and control applications. Develop software and implement it.

Syllabus

Introduction to Microprocessors- Microcontrollers- Digital Signal controllers and Digital Signal Processors- basic building blocks of a typical Digital Signal Processor. Hardware multipliers-Barrel shifter-MAC Unit-Modified Hardware architecture-RISC versus CISC-pipelining. Architecture of dsPIC30F3011-instruction set-addressing modes-assembly language and C programming-MPLABASM30 Assembler and C30 compiler. Peripherals-ports-tiers-input capture-output compare-ADC-MCPWM-QEI-UART.Architecture of TMS320LF28xx DSP-instruction set- programming-Code Composer Studio application Development- implementation of PI controller. Filter Algorithms- Clark and Park transformations- SPWM and SVPWM, PLL and Unit sine wave generation.

Course Outcome

At the end of course, the student will be able to:

• Familiar with digital signal processors, the programing language, method of interfacing and application in power electronics circuits, electric drives.

References

- 1. dsPIC30F Family Reference Manual
- 2. TMS320F240 Technical Reference Manual
- **3.** Toliyat, Hamid A and Steven Campbell, "DSP Based Electromechanical Motion Control", CRC Press 2003.
- 4. Application notes on DSP based Motor Control, and www.ti.com

COURSE PLAN

COURSE NO: 07EE 7131 COURSE TITLE: DIGITAL SIGNAL PROCESSORS (L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks: %
Ι	Introduction to Microprocessors- Microcontrollers- Digital Signal controllers and Digital Signal Processors- basic building blocks of a typical Digital Signal Processor	6	15
II	Hardware multipliers-Barrel shifter-MAC Unit-Modified Hardware architecture-RISC versus CISC-pipelining	6	15
FIRST INTERNAL EXAM			

III	Architecture of dsPIC30F3011-instruction set-addressing modes-assembly language and C programming- MPLABASM30 Assembler and C30 compiler	6	15
IV	Peripherals-ports-tiers-input capture-output compare- ADC-MCPWM-QEI-UART.	6	15
SECOND INTERNAL EXAM			
V	Architecture of TMS320LF28xx DSP-instruction set- programming-Code Composer Studio application Development- implementation of PI controller	6	20
VI	Filter Algorithms- Clark and Park transformations- SPWM and SVPWM, PLL and Unit sine wave generation.	6	20

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

ELECTIVES V

Course No.	Course Name	L-T-P-Credits	Year of Introduction		
07EE 7103	SPECIAL ELECTRICAL MACHINES AND DRIVES	ICAL 3-0-0-3 2015			
Prerequisite: Atta Drives – [07EE 6	ended courses on Electric Drives – [106]	07EE 6105] and	Advanced Electric		
Course Objective	es				
To introduce spec	ial types of electric machines and	their controls for	special applications.		
Syllabus Stepping Motors- Variable Reluctance (VR) stepping motor- Dynamic characteristics- Stepping motor drivers- Unipolar drive schemes- Dual voltage drive - Starting/stopping rate- Velocity profiling- Closed-loop control of stepping motors-Switched Reluctance Motors- inductance profile-Torque equation- motoring and generating mode - Energy conversion loop- Energy effectiveness-Power controllers, Characteristics and control- Permanent Magnet Brushless DC Motors - BLDC motor- Torque and emf equation, Sensors, radial and axial flux BLDC motors- Drive schemes - State space modelling and simulation of BLDC motor- Permanent Magnet Synchronous Motors - EMF, power input and torque expressions, Torque speed characteristics, Control Methods. Course Outcome At the end of course, the student will be able to: • Know the principles of special electrical machines • Theory of torque generation and speed control					
References					
 Kentorices Kenjo T, Sugawara A, "Stepping Motors and Their Microprocessor Control", Clarendon, Press, Oxford Paul Acarnley, "Stepping motors - a guide to theory and practice", 4th Edn. IET UK, 2002 Miller T J E, "Switched Reluctance Motor and their Control", Clarendon Press, Oxford Miller T J E, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford B K Bose, "Modern Power Electronics & AC drives", Pearson Education R Krishnan, "Electric Motor Drives – Modeling, Analysis and Control", CRC Press, 2010 					
COURSE PLAN COURSE NO: 07EE 7103 COURSE TITLE: SPECIAL ELECTRICAL MACHINES AND DRIVES (L-T-P: 3-0-0) CREDITS: 3					

Module	Contents	Contact Hours	Sem.Exam Marks: %	
Ι	Stepping Motors-Types of stepping motors- variable reluctance, permanent magnet and hybrid motors- Constructional features, principle of operation, modes of excitation- torque production in variable Reluctance (VR) stepping motor- Static torque characteristics- position error due to load torque- performance parameters- resolution, single step response and accuracy- Dynamic characteristics, resonance, pull-in and pull-out characteristics	6	15	
Π	Stepping motor drivers- Unipolar drive schemes- Dual voltage drive- voltage multiplying drive- Bipolar drive schemes- Bifilar drive scheme- open loop position control- Starting/stopping rate- Velocity profiling- single phase stepping motors- Micro stepping- Closed-loop control of stepping motors- Torque computation- gears, belts and lead screw- selection of stepping motor rating	6	15	
	FIRST INTERNAL EXAM			
III	Switched Reluctance Motors-Constructional features, principle of operation, inductance profile- Torque equation- motoring and generating mode- low speed and high speed operation- magnetization characteristics- flux linkage vs current- partition of input energy- Derivation of Torque equation- Energy conversion loop- Energy effectiveness- Power controllers, Characteristics and control- Six switch converter- Split dc supply converter-R dump- C dump converters- initial rotor position estimation.	6	15	
IV	Permanent Magnet Brushless DC Motors- Permanent magnet materials and characteristics- typical demagnetization curves- air gap line and operating point- BLDC motor- operating principle- Torque and emf equation, Torque-speed characteristics, Hall sensors, Optical sensors	6	15	
SECOND INTERNAL EXAM				
V	Radial and axial flux BLDC motors- Drive schemes, soft current chopping and hard chopping- low cost drive schemes- extended speed of operation with phase angle control- State space modelling and simulation of BLDC motor- Torque ripple- Sensorless control- third harmonic voltage detection method - back emf detection method - starting process- comparison of BLDC motor with dc motors and induction motors.	6	20	
VI	Permanent Magnet Synchronous Motors- radial and parallel magnetization- Halbach arrays- Principle of operation, SPM and IPM machines- EMF, power input and	6	20	

torque expressions, Phasor diagram, Power controllers,	
Torque speed characteristics, Self-control, Field oriented	
control- constant torque-angle control, Current control	
schemes	

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	- 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No	0.	Course Name	L-T-P-Credit	S Year of I	ntroduction
07EE 721	3	SOFT COMPUTING TECHNIOUES	3-0-0-3	2	015
Prerequisi	te: l	Nil			
Course Ob	oject	tives			
To acquain	t the	e students with soft computing metho	dologies such a	s neural net	works, fuzzy
logic, gene	tic a	algorithms and hybrid algorithms and	d enable the stu	dents to imp	olement real
time intelli	gent	and adaptive systems.			
Syllabus					
Introduction	to I	Fuzzy logic - Membership Functions- Fu	uzzification-Metl	nods of Meml	pership value
Assignment	s- Fi	izzy Rule Base-Defuzzification- Fuzzy	logic controller (Block Diagra	m) Artificial
Neural Netv	vork	s-Neural network Architectures- Feed	forward network	-Characteristi	cs of Neural
Networks-L	earn	ing methods. Perceptron networks-Back	Propagation netv	vorks-Radial	base function
network-Ho	pfiel	d network- Kononen Self organizin	g maps-ARI.	Fundamentals	of genetic
algorithms:	wor	king principle – encoding – different n	nethous – fitness	Function – I	the Usheid
systems: Ne	ural	ng-internatice- Crossover - initiation-c	ithm hybrids	euro fuzzy h	whride neuro
genetic hybr	ride_	Fuzzy genetic hybrids- Fuzzy back pro	magation networ	ks -fuzzy log	ic controlled
genetic algo	rithr	ns	pagation networ	K5 -1022 10g	ie controlled
Course Out	tcom				
At the end of	of cou	urse, the student will be able to:			
• Und	lersta	and different soft computing techniques.	application of	soft computir	g techniques
in c	ontro	ol systems & optimizations		1	0 1
References	5	v 1			
1. S.I	Raja	sekharan, G.A.Vijayalakshmi Pai, "λ	leural Network,	Fuzzy Logic	c and
Ge	eneti	C S S	,		
Alg	gorii	thms Synthesis and Applications", Pr	entice Hall Indi	a.	
2. S.I	N.Si	vanandam, S.N.Deepa, "Principles og	f Soft Computin	g", Wiley Ir	ndia.
3. Ti	moth	ny J Ross, "Fuzzy logic with Enginee	ring Applicatio	ns", McGrav	w Hill, New
	ork.	ing "Normal Notice of Communities	f 1	" Deerson I	- des a sti a m
4. 5.1 5 D	паун Б.С.	allerg "Ganatic Algorithms in	Search Optiv	, Pearson f	d Machina
J. D.	L.U arni	ing" Pearson Education	Search Opin	usuion un	u muchine
6. Re	cent	t Literature.			
		COURSE PLA	N		
CC	OUR	SE NO: 07EE 7213 COURSE '	FITLE: SOFT	COMPUTI	NG
		TECHNIQUES (L-T-P: 3-0-0)	CREDIT	S: 3	
Modulo		Contents		Contact	Sem.Exam
Module		Contents		Hours	Marks
	Inti	roduction to Fuzzy logic: Fuzzy se	ts- Fuzzy set		
	ope	erations- Fuzzy relations-Cardinality	of Fuzzy		
т	rela	ations-Operations on Fuzzy relations	s-Properties of	6	15
	Fuz	zzy relations-Membership Functions	s-Features of	0	15
	Me	mbership functions- Fuzzification	-Methods of		
	Me	embership value Assignments- Fuzzy Ru	le Base		
П	Det	fuzzification- Deffuzzification methods	s- Fuzzy logic	6	15
11	con	ntroller (Block Diagram). Artificial New	ural Networks:	0	1.5

	Basic concepts-Neural network Architectures-Single layer		
	feed forward network-Multilayer feed forward network-		
	Recurrent Networks		
	FIRST INTERNAL EXAM		
	Characteristics of Neural Networks-Learning methods.		
ш	Perceptron networks-Back Propagation networks-Radial	6	15
111	base function network-Hopfield network- Kohonen Self	0	15
	organizing maps-ART		
	Fundamentals of genetic algorithms: Basic concepts-		
	working principle – encoding – different methods – fitness		
IV	function – reproduction-different methods. Genetic	6	15
	modelling-inheritance- Crossover mutation-convergence		
	of genetic algorithm.		
SECOND INTERNAL EXAM			
	Hybrid systems: Neural network, fuzzy logic and genetic		
V	algorithm hybrids - Neuro fuzzy hybrids- neuro genetic	6	20
	hybrids-Fuzzy genetic hybrids		
VI	Genetic algorithm based back propogation network-		
	Fuzzy back propagation networks -fuzzy logic controlled	6	20
	genetic algorithms		

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	-15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction		
07EE 7123	ELECTROMAGNETIC COMPATIBILITY	3-0-0-3	2015		
Prerequisite: Kn	owledge in Field theory				
Course Objectiv	es				
To study EMI issu	ues and its reduction techniques				
Syllabus					
Electromagnetic C methods of reducin coupling, effect of Mode Choke -shiel characteristic and Conducted Emission Design considerati Transient and Surg ground connection signal PCB layout	Electromagnetic Compatibility (EMC): Designing for EMC, EMC regulations, typical noise path, methods of reducing interference in electronic system. Cabling of Electronic Systems, inductive coupling, effect of shield on magnetic coupling- Grounding and Shielding Safety grounds, Common Mode Choke -shield grounding at high frequencies, guarded instruments. Near fields and far fields, characteristic and wave impedances, shielding effectiveness, absorption and reflection loss - Conducted Emissions- Design for EMC –PCB layout and stack up- General Printed Circuit Board Design considerations – Electrostatic Discharge(ESD) - ESD protection in equipment design, Transient and Surge Fourier spectrum - decoupling - PCB layout considerations: PCB-to-chassis ground connection - PCB layer stack up - multilayer boards - general PCB design procedure, mixed-signal PCB layout - analog and digital ground pins, mixed-signal power distribution.				
Course Outcome					
 Know the i Importance Design PC Importance Design a co 	 Know the importance of EMI, EMC & ESD in electronic circuits Importance of shielding in electronic circuits from power circuits Design PCB with shielding Importance of ground connections of power and signals Design a completely shielded electronic circuit 				
References					
1. Henry W. 2009	.Ott, "Electromagnetic Compatibi	lity Engineering"	, Wiley Interscience,		
2. Henry W. Interscient	2. Henry W.Ott, "Noise Reduction Techniques in Electronic Systems", 2/e, Wiley Interscienc				
3. Clayton R	.Paul, "Introduction to Electroma	gnetic Compatibil	<i>lity</i> ", 2/e		
4. Sonia Ben	4. Sonia Ben Dhia, Mohamed Ramdani, Etienne Sicard, <i>"Electromagnetic</i>				
<i>Compatibility of Integrated Circuits Techniques for low emission and</i> susceptibility". Springer, 2006					
5. David Mo	 David Morgan, "A Handbook for EMC Testing and Measurement", 1/e, IET Electrical Massurement Series 8 				
6. Mark I. M	 Mark I. Montrose, "<i>EMC and the Printed Circuit Board</i>", John Wiley & Sons, 				
7. Howard W Hall, 1993	V. Johnson and Martin Graham, "H 3.	ligh Speed Digita	<i>l Design</i> ", Prentice		
COURSE PLAN					
COURSE NO: 07EE 7123 COURSE TITLE: ELECTROMAGNETIC					
	COMPATIBIL	ITY			
	(L-T-P: 3-0-0) CH	REDITS: 3			

Module	Contents	Contact Hours	Sem.Exam Marks: %		
Ι	Electromagnetic Compatibility (EMC): Designing for EMC, EMC regulations, typical noise path, methods of noise coupling, methods of reducing interference in electronic system. Cabling of Electronic Systems- Capacitive coupling, effect of shield on capacitive coupling, inductive coupling, effect of shield on inductive coupling, effect of shield on magnetic coupling, magnetic coupling between shield and inner conductor, shielding toprevent magnetic radiation, shielding a receptor against magnetic fields	6	15		
Ш	Inductive coupling-shielding properties of various cable configurations, coaxial cable versus shielded twisted pair, braided shields, ribbon cables. Grounding and Shielding Safety grounds, signal grounds, single-point and multipoint-point ground systems, hybrid grounds, functional ground layout, practical low frequency grounding, hardware grounds, grounding of cable shields, ground loops, Common Mode Choke -shield grounding at high frequencies, guarded instruments.	6	15		
	FIRST INTERNAL EXAM				
III	Near fields and far fields, characteristic and wave impedances, shielding effectiveness, absorption and reflection loss, shielding with magnetic material, apertures, conductive gaskets, conductive windows, conductive coating, grounding of shields	6	15		
IV	Conducted Emissions- power line Impedance-Switched Mode Power supplies- Power line Filters- power supply Instability-Magnetic field Emissions System Design for EMC –PCB layout and stack up- General Printed Circuit Board Design considerations –PCB chassis and Ground connection, Return Path Discontinuities- PCB layer Stack up Electrostatic Discharge(ESD)	6	15		
SECOND INTERNAL EXAM					
V	Static generation, human body model, static discharge, ESD protection in equipment design, Transient and Surge Protection Devices, software and ESD protection, ESD versus EMC, ESD Testing.Digital circuit power distribution: power supply decoupling, transient power supply currents, transient load current, Fourier spectrum, decoupling capacitors, effective decoupling strategies, multiple decoupling capacitors, target impedance, embedded PCB capacitance, power supply isolation, the effect of decoupling on radiated emissions, decoupling capacitor selection, placement and mounting.	6	20		
VI	PCB layout considerations: PCB-to-chassis ground connection, return path discontinuities, slots in ground/power planes, split ground/power planes, changing reference planes, ground fill, PCB layer stack up, one- and two-layer boards, multilayer boards, four-layer boards, six- layer boards, eight-layer boards, general PCB design	6	20		
----	--	---	----		
	procedure, mixed-signal PCB layout, split ground planes, micro-strip ground plane current distribution, analog and digital ground pins, mixed-signal power distribution.				

Internal Continuous Assessment: 40 marks

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	- 10 Marks

End Semester Examination: 60 marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 7133	ELECTRIC SYSTEMS FOR WIND AND SOLAR ENERGY	3-0-0-3	2015
Prerequisite: Knowledge in Renewable energy Technology and Attended course on			
Advanced Electric Drives – [07EE 6106]			

Course Objectives

To introduce the various electrical generators and appropriate power electronic controllers employed in wind and photovoltaic energy systems.

Syllabus

Wind energy - Aerodynamic models – braking systems – tower - control and monitoring system - design considerations-power curve - power speed characteristics. Choice of electrical generators Wind turbine generator systems-fixed speed induction generator-performance analysis-semi variable speed induction generator-variable speed induction generators with full and partial rated power converter topologies -isolated systems-self excited induction generator- permanent magnet alternator -performance analysis. Sun and Earth-Basic Characteristics of solar radiation-angle of sunrays on solar collector- Photovoltaic cell-characteristics-equivalent circuit-Photovoltaic modules and arrays. PV Systems-Design of PV systems-Standalone system with DC and AC loads with and without battery storage-Grid connected PV systems-Maximum Power Point Tracking

Course Outcome

At the end of course, the student will know:

- Method of taping wind and solar energy
- Estimation of wind power and solar power from environment
- Conversion to electric power
- Utilisation by an isolated load and by grid

References

- 1. Marcelo Godoy Simões and Felix A. Farret, "*Renewable Energy Systems: Design and Analysis with Induction Generators*", CRC Press, ISBN 0849320313, 2004.
- 2. Ion Boldea, "Variable Speed Generators", CRC Press, ISBN 0849357152, 2006.
- 3. S.N. Bhadra, D.Kastha and S.Banerje, "Wind Electrical Systems", Oxford Uni Press, 2005.
- 4. Siegfried Heier, Rachel Waddington, "Grid Integration of Wind Energy Conversion Systems", 2ndEdition', Wiley, 2006,
- 5. Freries LL, "Wind Energy Conversion Systems", Prentice Hall, U.K., 1990
- 6. Chetan Singh Solanki, "Solar Photovoltaics-Fundamentals, Technologies and Applications", PHI Learning Pvt. Ltd., New Delhi, 2011
- 7. Van Overstraeton and Mertens R.P., "*Physics, Technology and use of Photovoltaics*", Adam Hilger, Bristol, 1996.
- 8. John F.Walker & Jenkins. N, "Wind Energy Technology", John Wiley and sons, Chichester, UK, 1997.
- 9. Freries LL,"Wind Energy Conversion Systems", Prentice Hall, U.K., 1990

COURSE PLAN COURSE NO: 07EE 7133 WIND AND SOLAR ENERGY (L-T-P: 3-0-0) CREDITS: 3

Module	Contents	Contact Hours	Sem.Exam Marks: %	
Ι	Wind energy – energy in the wind – aerodynamics - rotor types – forces developed by blades - Aerodynamic models – braking systems – tower - control and monitoring system	6	15	
П	Design considerations-power curve - power speed characteristics. Choice of electrical generators Wind turbine generator systems-fixed speed induction generator- performance analysis	6	15	
	FIRST INTERNAL EXAM			
III	Semi variable speed induction generator-variable speed induction generators with full and partial rated power converter topologies -isolated systems-self excited induction generator- permanent magnet alternator - performance analysis.	6	15	
IV	Sun and Earth-Basic Characteristics of solar radiation- angle of sunrays on solar collector	6	15	
SECOND INTERNAL EXAM				
V	Sun and Earth-Basic Characteristics of solar radiation- angle of sunrays on solar collector- Case Studies	6	20	
VI	PV Systems-Design of PV systems-Standalone system with DC and AC loads with and without battery storage- Grid connected PV systems-Maximum Power Point Tracking- Case Studies	6	20	

Internal Continuous Assessment: 40 marks

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

First Internal Test	– 15 Marks
Second Internal Test	– 15 Marks
Assignments/Term Paper/Seminar	– 10 Marks

End Semester Examination: 60 marks

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 7105	SEMINAR II	0-0-2-2	2015

Course Objectives

To assess the debating capability of the student to present a technical topic. Also to impart training to a student to face audience and present his ideas and thus creating in him self-esteem and courage that are essential for an engineer.

Syllabus

Individual students are required to choose a topic of their interest from power electronic related topics preferably from outside the M.Tech syllabus. And give a seminar on that topic in about 45 minutes. By the end of the semester student will demonstrate the simulation of system/circuit presented. A committee consisting of at least three faculty members (preferably specialized in power electronics) shall assess the presentation of the seminar and award marks to the students based on merits of topic of presentation. Each student shall submit two copies of a write up of his seminar topic. One copy shall be returned to the student after duly certifying it by the chairman of the assessing committee and the other will be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation and simulation.

Internal Continuous Assessment: 100 marks

- i) Marks for the report: 30%
- ii) Presentation: 40%
- iii) Ability to answer questions on the topic: 30%

Course No.	Course Name	L-T-P-Credits	Year of Introduction
07EE 7107	PROJECT (PHASE 1)	0-0-12-6	2015

Course Objectives

To improve the professional competency and research aptitude by touching the areas which otherwise not covered by theory or laboratory classes. The project work aims to develop the work practice in students to apply theoretical and practical tools/techniques to solve real life problems related to industry and current research.

Syllabus

The project work can be a design project/experimental project and/or computer simulation project on any of the topics in power electronics/drives related topics. The project work is allotted individually on different topics. The students shall be encouraged to do their project work in the parent institute itself. If found essential, they may be permitted to carry out their main project outside the parent institute, subject to the conditions specified in the MTech regulations.

The student is required to undertake the project (phase 1) during the third semester and the same is continued in the 4thsemester (Phase 2). Phase 1 consist of preliminary thesis work, two reviews of the work and the submission of preliminary report. First review would highlight the topic, objectives, methodology and expected results. Second review evaluates the progress of the work, preliminary report and scope of the work which is to be completed in the 4th semester.

Project Evaluation:

Progress evaluation by the Project Supervisor: 20 Marks Presentation and evaluation by the committee: 30 Marks Total marks for the Project Phase 1: 50 Marks

SEMESTER 4

Course No.	Course Name	L-T-P-Credits	Year of
			Introduction
07EE 7102	PROJECT (PHASE 2)	0-0-21-12	2015

Course Objectives

To improve the professional competency and research aptitude by touching the areas which otherwise not covered by theory or laboratory classes. The project work aims to develop the work practice in students to apply theoretical and practical tools/techniques to solve real life problems related to industry and current research.

Syllabus

Project (Phase 2) is a continuation of project phase 1 started in the third semester. There would be two reviews in the fourth semester, first in the middle of the semester and the second at the end of the semester. First review is to evaluate the progress of the work, presentation and discussion. Second review would be a pre-submission presentation before the evaluation committee to assess the quality and quantum of the work done. At least one technical paper is to be prepared for possible publication in journal or conferences. The technical paper is to be submitted along with the thesis.

Project Evaluation:

Project evaluation by the supervisor/s: 30 Marks Presentation & evaluation by the Committee: 40 Marks Evaluation by the External expert: 30 Marks Total marks for the Project Phase 2: 100 Marks